Green Roof Systems for Rainwater and Sewage Treatment
Abstract
:1. Introduction
2. Methods
3. Green Roof Systems
3.1. Definition and Classification
3.2. Operating Mechanism
3.3. Design and Construction
4. Research Status
4.1. Vegetation
4.1.1. The Influence of Vegetation
4.1.2. The Influence of a Singular Vegetation Type
4.1.3. The Influence of Vegetation Combinations
Plants | References |
---|---|
Ophiopogon japonicus (L. f.) Ker Gawl., Ophiopogon japonicus ‘Nanus’ | [46] |
Cynodon dactylon, Cyperus javanicus Houtt Cyperus rotundus L., Eleusine indica (L.) Gaertn Imperata cylindrical, Kyllinga brevifolia Rottb Struchium sparganophorum (L.) Kuntze, Zenith zoysia grass | [26] |
Hylotelephium erythrostictum (Miq.) H. Ohba, Iris tectorum Maxim. Ophiopogon japonicus (L. f.) Ker Gawl. | [34,45] |
Callisia repens L., Cynodon dactylon (L.) Persoon Eremochloa ophiuroides (Munro) Hack. Festuca arundinacea Schreb., Poa pratensis L., Sedum lineare Thunb. | [47] |
Sedum aizoon L., Sedum lineare Thunb. Sedum spurium cv.Coccineum, Sedum spectabile | [48] |
Briza maxima, Conyza sp.Digitaria sanguinalis, Dittrichia viscosa Filago pyramidata, Gomphocarpus fruticosus Illecebrum verticillatum, Lavandula stoechas subsp. luisieri Pleurochaete squarrosa, Sedum sediforme Teucrium scorodonia, Trifolium angustifolium, Vulpia geniculata | [57] |
Axonopus Compressus, Wedelia Trilobata | [58] |
Atriplex halimus, Geranium zonale, Polygala myrtifolia | [49] |
Agrostis matsumurae, Cynodondactylon, Festuca elata Lolium perenne, Poa pratensis, Zoysia japonica | [56] |
Eustachys retusa, Grindelia cabrerae Phyla nodiflora, Sedum mexicanum | [52] |
4.2. Substrate
4.2.1. Substrate Composition and Proportion
4.2.2. Substrate Thickness
4.2.3. Substrate Amendment
Main Substrate Component | Depth | References |
---|---|---|
Expanded clay, Spongilite, Peat, Brick rubble, Biochar from wood, Biochar from sewage sludge, Biochar from food waste, and Dried sewage sludge | 150 mm | [69] |
Expanded clay, Crushed marl, Peat, Recycled bricks, Biochar | 100 mm | [74] |
Peat soil, vermiculite | 250 mm | [73] |
Fractured tiles, Red lava, Fine pumice, Compost, Peat, Sand, Coconut fiber, Gravel | 60 mm, 90 mm | [75] |
Soil, Rice husk biochar, Maize stalk biochar, Perlite, Vermiculite | 100 mm | [70] |
Soil, Cocopeat, Loofah, Perlite | 80 mm | [76] |
Compost, Paper sludge, Pelletized paper sludge, Vulcaflor | 100 mm | [77] |
Unprocessed biochar, Granulated biochar | 80 mm | [42] |
Perlite, Vermiculite, LECA | 150 mm, 250 mm | [49] |
Biochar, Vermiculite, Porous aggregates, Composted organic matter, Fine sand | 80 mm | [71] |
Perlite, Peatmoss, Vermiculite | 100 mm, 200 mm, 400 mm | [24] |
Rural soil, Peat soil, Pine needle, Perlite, Vermiculite | 50 mm, 100 mm, 150 mm | [45] |
Peat soil, Vermiculite, Perlite, Biochar, Sawdust | 50 mm, 100 mm, 150 mm, 200 mm | [78] |
Wheat straw | >200 mm | [79] |
Sand, Gravel, Limestone, Lightweight Aggregates, Expanded clay and ash, Crushed red brick | - | [63] |
Sand, Gravel, Brick, Rubble, Bark, Peat, Compost, Polonite | 120 mm | [80] |
Humic soil, Compost, Coco-peat, Rice husk, Coarse pumice, Expanded clay, Sand, Zeolite, Perlite | 100 mm | [64] |
Horticultural soil, Sand, Expanded clay aggregate, Light expanded clay aggregate, Perlite | 80 mm | [62] |
Waste building material substrate, Local natural soil | 200 mm, 250 mm, 300 mm | [81] |
Stabilized sludge, Biochar, Pumice, Wood chips, Topsoil, Controlled release fertilizer | 100 mm, 150 mm | [82] |
Rural soil, Peat soil, Pine needle, Perlite, Vermiculite | 50 mm, 100 mm, 150 mm | [34] |
Pastoral soil, Turfy soil, Pine needles | 50 mm, 100 mm, 150 mm | [16] |
Peat, Vermiculite, Perlite, Sawdust, Biochar | 100 mm | [59] |
Rural soil, Peat soil, Pine needles, Perlite, Vermiculite | 50 mm, 100 mm, 150 mm | [83] |
Modified perlite, Modified recycled bricks, | 100 mm, 200 mm | [46] |
Perlite, Coal ash | 200 mm | [84] |
Local soil, Peat soil, Vermiculite, Perlite | 50 mm, 100 mm | [85] |
Pumice, Lava, Perlite, Activated charcoal, Zeolite | 50 mm, 100 mm, 150 mm | [21] |
Peat, Volcanic rock, Wood biochar, Olive husk biochar | 200 mm | [86] |
Expanded clay, Granulated cork, Organic matter from urban solid waste compost, Crushed egg shell | 150 mm | [87] |
Crushed bark, Sphagnum moss, Compost, Recycled, Crushed brick, Biochar from Birch Wood | 30 mm, 40 mm | [68] |
Crushed, Recycled brick, Compost, Crushed bark | 50 mm | [88] |
Purosil, Vermiculite, Sand, Lightweight expanded clay aggregates, Coco-peat, Sargassum wightii | 100 mm | [66] |
Expanded slate, Compost | 10 mm | [89] |
Peat soil, Vermiculite, Perlite, Sawdust, | 150 mm | [90] |
Vermiculite, Perlite, Crushed brick, Sand, Coco-peat | 100 mm | [65] |
4.3. Slope
4.4. Operating Conditions
4.4.1. Hydraulic Retention Time
4.4.2. Hydraulic Load Rate
4.4.3. Water Feeding Patterns
4.4.4. Other Additional Conditions
4.5. Time
4.6. Weather
4.6.1. Temperature
4.6.2. Humidity
4.6.3. Precipitation
4.6.4. Climate Zone
4.7. Processing Objects
4.7.1. Greywater
4.7.2. Blackwater
4.7.3. Other Types of Water
Processing Objects | Influent (mg/L) | Effluent (mg/L) | References | ||
---|---|---|---|---|---|
N and P Concentration | Organic Concentration | N and P Concentration | Organic Concentration | ||
Greywater | TN: 10.1 ± 2.7 TP: 7.6 ± 2.4 | COD: 226 ± 60 BOD: 132 ± 36 | TN: 4.9 ± 2.7 TP: 3.9 ± 2.1 | COD: 20–36 BOD: 20 ± 11 | [49] |
Greywater | - | COD: 226 ± 60 BOD5: 132 ± 36 | - | COD: 25 ± 17 BOD5: 14 ± 10 | [95] |
Greywater | -N: 1.9–3.3 TN: 2.3–4.6 TP: 0.34–0.36 | COD: 234–313 BOD5: 121–149 | -N < 3 TN < 4 TP < 0.4 | COD: 53.6 BOD5: 4.1 | [27] |
Greywater | TN: 16.3 (HLR1) TN: 16.7 (HLR2) TP: 1.2 (HLR1) TP: 2.6 (HLR2) | COD: 635.2 (HLR1) COD: 1115 (HLR2) BOD5: 393.3 (HLR1) BOD5: 407.7 (HLR2) | TN: 1.2 (HLR1) TN: 1.1 (HLR2) TP: 0.4 (HLR1) TP: 0.3 (HLR2) | COD: 69.1 (HLR1) COD: 61.3 (HLR2) BOD5: 10.6 (HLR1) BOD5: 5.9 (HLR2) | [112] |
Greywater | -N: 10.28 –14.56 -N: 12.32–7.84 TP: 2.934–3.84 | COD: 216–320 BOD5: 68–120 | -N: 0.67–0.95 -N: 1.2–3.5 TP: 0.8–1.4 | COD < 10BOD5 < 20 | [110] |
Greywater | -N: 1.2 ± 0.3 -N: 1.6 ± 0.3 TP: 0.7 ± 0.1 | COD: 81.9 ± 4.1 BOD5: 19.0 ± 0.9 | No clear change | BOD5 < 10 | [113] |
Greywater | - | COD: 87 (low level) COD: 495 (high level) BOD5: 20 (low level) BOD5: 164 (high level) | - | COD: 19 (low level) COD: 159 (high level) BOD5: 2 (low level) BOD5: 80 (high level) | [114] |
Blackwater | TP: 5.8 ± 0.6 | COD: 176 ± 43 | TP: 1.3–7 | COD: 25–65 | [94] |
Blackwater | TKN: 42 ± 7 -N: 38 ± 2 -N: 0.5 ± 0.3 TP: 1.5 ± 0.7 | COD: 108 ± 53 | TN: 14 ± 3 TP: 0.4 ± 0.3 | COD: 32 ± 26, | [25] |
Blackwater | TKN: 42 ± 7 -N: 38 ± 2 -N: 0.5 ± 0.3 TP: 1.5 ± 0.7 | COD: 108 ± 53 | TN: 10 ± 4 (HLR1) TN: 10 ± 2 (HLR2) TP: 0.7 ± 0.3 (HLR1) TP: 0.4 ± 0.3 (HLR2) | COD: 29 ± 16 (HLR1) COD: 34 ± 23 (HLR2) | [26] |
5. Conclusions
6. Prospective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
TN | Total nitrogen | SS | Suspended solids |
-N | Nitrate nitrogen | EC | Electrical conductivity |
-N | Nitrite nitrogen | TDS | Total dissolved solids |
-N | Ammonium nitrogen | ESP | Exchangeable sodium percentage |
TKN | Total kjeldahl nitrogen | MBAS | Methylene blue active substance |
TP | Total phosphorus | DOC | Dissolved organic carbon |
-P | Orthophosphate | FC | Fecal coliform |
COD | Chemical oxygen demand | TMA | Trimethyl amine |
BOD | Biochemical oxygen demand | SDS | Sodium do-decyl sulphate |
TSS | Total soluble solid | PG | Propylene glycol |
References
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Koehler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems:: Ecological structures, functions, and services. Biosci. 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Rowe, D.B.; Getter, K.L.; Durhman, A.K. Effect of green roof media depth on Crassulacean plant succession over seven years. Landsc. Urban Plan. 2012, 104, 310–319. [Google Scholar] [CrossRef]
- Rafael, S.; Correia, L.P.; Ascenso, A.; Augusto, B.; Lopes, D.; Miranda, A.I. Are green roofs the path to clean air and low carbon cities? Sci. Total. Environ. 2021, 798, 149313. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, S.H.B.; Pons, O.; Hosseini, S.M.A. Sustainability model to assess the suitability of green roof alternatives for urban air pollution reduction applied in Tehran. J. Affect. Disord. 2021, 194, 107683. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S.J. Attenuating heat stress through green roof and green wall retrofit. J. Affect. Disord. 2018, 140, 11–22. [Google Scholar] [CrossRef]
- Wooster, E.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P. Urban green roofs promote metropolitan biodiversity: A comparative case study. J. Affect. Disord. 2022, 207. [Google Scholar] [CrossRef]
- Friedler, E.; Hadari, M. Economic feasibility of on-site greywater reuse in multi-storey buildings. Desalination 2006, 190, 221–234. [Google Scholar] [CrossRef]
- Ghaitidak, D.M.; Yadav, K.D. Characteristics and treatment of greywater—a review. Environ. Sci. Pollut. Res. 2013, 20, 2795–2809. [Google Scholar] [CrossRef] [PubMed]
- Leigh, N.G.; Lee, H. Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning. Sustainability 2019, 11, 918. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Integrated, Decentralized Wastewater Management for Resource Recovery in Rural and Peri-Urban Areas. Resources 2017, 6, 22. [Google Scholar] [CrossRef]
- Lam, L.; Kurisu, K.; Hanaki, K. Comparative environmental impacts of source-separation systems for domestic wastewater management in rural China. J. Clean. Prod. 2015, 104, 185–198. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pr. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Santos, A.V.; Lin, A.R.A.; Amaral, M.C.S.; Oliveira, S.M.A.C. Improving control of membrane fouling on membrane bioreactors: A data-driven approach. Chem. Eng. J. 2021, 426, 131291. [Google Scholar] [CrossRef]
- Ferrans, P.; Rey, C.V.; Pérez, G.; Rodríguez, J.P.; Díaz-Granados, M. Effect of Green Roof Configuration and Hydrological Variables on Runoff Water Quantity and Quality. Water 2018, 10, 960. [Google Scholar] [CrossRef]
- Liu, R.; Stanford, R.L.; Deng, Y.; Liu, D.; Liu, Y.; Yu, S.L. The influence of extensive green roofs on rainwater runoff quality: A field-scale study in southwest China. Environ. Sci. Pollut. Res. 2019, 27, 12932–12941. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Yin, D.; Li, J.; Zhang, X.; Wang, W.; Fang, X.; Shi, H.; Wang, Q. Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments. Sci. Total. Environ. 2019, 687, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Segovia, E.; Ziegler, A.D. Water quality impacts of young green roofs in a tropical city: A case study from Singapore. Blue-Green Syst. 2021, 3, 145–163. [Google Scholar] [CrossRef]
- Chen, C.-F. Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Alsup, S.; Ebbs, S.; Retzlaff, W. The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosyst. 2009, 13, 91–111. [Google Scholar] [CrossRef]
- Berndtsson, J.C.; Bengtsson, L.; Jinno, K. Runoff water quality from intensive and extensive vegetated roofs. Ecol. Eng. 2008, 35, 369–380. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Zhao, X. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality. Sci. Total. Environ. 2017, 592, 465–476. [Google Scholar] [CrossRef]
- Hashemi, S.S.G.; Bin Mahmud, H.; Ashraf, M.A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Pucher, B.; Calheiros, C.S.C.; Hoffmann, K.A.; Aicher, A.; Pinho, P.; Stracqualursi, A.; Korolova, A.; Pobric, A.; Galvão, A.; et al. Closing Water Cycles in the Built Environment through Nature-Based Solutions: The Contribution of Vertical Greening Systems and Green Roofs. Water 2021, 13, 2165. [Google Scholar] [CrossRef]
- Park, S.-Y.; Oh, D.-K.; Lee, S.-Y.; Yeum, K.-J.; Yoon, Y.-H.; Ju, J.-H. Combined Effects of Substrate Depth and Vegetation of Green Roofs on Runoff and Phytoremediation under Heavy Rain. Water 2022, 14, 2792. [Google Scholar] [CrossRef]
- Thi-Dieu-Hien, V.; Thi-Bich-Ngoc, D.; Xuan-Thanh, B.; Van-Truc, N.; Dinh-Duc, N.; Sthiannopkao, S.; Lin, C. Improvement of septic tank effluent and green coverage by shallow bed wetland roof system. Int. Biodeter. Biodegr. 2017, 124, 138–145. [Google Scholar]
- Thi-Dieu-Hien, V.; Xuan-Thanh, B.; Dinh-Duc, N.; Van-Truc, N.; Ngo, H.-H.; Guo, W.; Phuoc-Dan, N.; Cong-Nguyen, N.; Lin, C. Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs. Bioresource. Technol. 2018, 247, 992–998. [Google Scholar]
- Xu, L.; Yang, S.; Zhang, Y.; Jin, Z.; Huang, X.; Bei, K.; Zhao, M.; Kong, H.; Zheng, X. A hydroponic green roof system for rainwater collection and greywater treatment. J. Clean. Prod. 2020, 261. [Google Scholar] [CrossRef]
- Thi-Dieu-Hien, V.; Xuan-Thanh, B.; Lin, C.; Van-Truc, N.; Thi-Khanh-Dieu, H.; Hong-Hai, N.; Phuoc-Dan, N.; Ngo, H.H.; Guo, W. A mini-review on shallow-bed constructed wetlands: A promising innovative green roof. Curr. Opin. Environ. Sci. Health. 2019, 12, 38–47. [Google Scholar]
- Mahmoudi, A.; Mousavi, S.A.; Darvishi, P. Greywater as a sustainable source for development of green roofs: Characteristics, treatment technologies, reuse, case studies and future developments. J. Environ. Manag. 2021, 295, 112991. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X. Constructed wetlands for greywater recycle and reuse: A review. Sci. Total. Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total. Environ. 2019, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Khan, A.N.; Waris, A.; Ilyas, M.; Zamel, D. Phytoremediation of pollutants from wastewater: A concise review. Open Life Sci. 2022, 17, 488–496. [Google Scholar] [CrossRef] [PubMed]
- 3Chaudhary, V.B.; Sandall, E.L.; Lazarski, M.V. Urban mycorrhizas: Predicting arbuscular mycorrhizal abundance in green roofs. Fungal Ecol. 2019, 40, 12–19. [Google Scholar] [CrossRef]
- Liu, W.; Wei, W.; Chen, W.; Deo, R.C.; Si, J.; Xi, H.; Li, B.; Feng, Q. The impacts of substrate and vegetation on stormwater runoff quality from extensive green roofs. J. Hydrol. 2019, 576, 575–582. [Google Scholar] [CrossRef]
- Han, W.; Li, T.; Cheng, L.; Liu, L.; Yu, L.; Peng, Z. Effect of adding microorganism and carbon source to substrate on nitrogen removal treating the drainage of WWTP. Water. Sci. Technol. 2019, 79, 1947–1955. [Google Scholar]
- John, J.; Kernaghan, G.; Lundholm, J. The potential for mycorrhizae to improve green roof function. Urban Ecosyst. 2016, 20, 113–127. [Google Scholar] [CrossRef]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Sci. Total. Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef]
- Kader, S.; Chadalavada, S.; Jaufer, L.; Spalevic, V.; Dudic, B. Green roof substrates—A literature review. Front. Built Environ. 2022, 8. [Google Scholar] [CrossRef]
- Hachoumi, I.; Pucher, B.; De Vito-Francesco, E.; Prenner, F.; Ertl, T.; Langergraber, G.; Fürhacker, M.; Allabashi, R. Impact of Green Roofs and Vertical Greenery Systems on Surface Runoff Quality. Water 2021, 13, 2609. [Google Scholar] [CrossRef]
- Xiao, M.; Lin, Y.; Han, J.; Zhang, G. A review of green roof research and development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2020, 135, 110111. [Google Scholar] [CrossRef]
- Liao, W.; Drake, J.; Thomas, S.C. Biochar granulation, particle size, and vegetation effects on leachate water quality from a green roof substrate. J. Environ. Manag. 2022, 318, 115506. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Reddy, D.H.K.; Yun, Y.-S. Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustain. Cities Soc. 2018, 46, 101381. [Google Scholar] [CrossRef]
- Liu, H.; Yin, H.; Kong, F.; Middel, A.; Zheng, X.; Huang, J.; Sun, T.; Wang, D.; Lensky, I.M. Change of nutrients, microorganisms, and physical properties of exposed extensive green roof substrate. Sci. Total. Environ. 2021, 805, 150344. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Engel, B.A.; Chen, W.; Wei, W.; Wang, Y.; Feng, Q. Quantifying the contributions of structural factors on runoff water quality from green roofs and optimizing assembled combinations using Taguchi method. J. Hydrol. 2020, 593, 125864. [Google Scholar] [CrossRef]
- Chai, H.; Tang, Y.; Su, X.; Wang, W.; Lu, H.; Shao, Z.; He, Q. Annual variation patterns of the effluent water quality from a green roof and the overall impacts of its structure. Environ. Sci. Pollut. Res. 2018, 25, 30170–30179. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cao, J.; Ali, M.; Zhang, J.; Wang, Z. Impact of green roof plant species on domestic wastewater treatment. Environ. Adv. 2021, 4, 100059. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, H.; Zhang, X.; He, S.; Miao, Y. A comparison of the growth status, rainfall retention and purification effects of four green roof plant species. J. Environ. Manag. 2021, 278, 111451. [Google Scholar] [CrossRef] [PubMed]
- Thomaidi, V.; Petousi, I.; Kotsia, D.; Kalogerakis, N.; Fountoulakis, M. Use of green roofs for greywater treatment: Role of substrate, depth, plants, and recirculation. Sci. Total. Environ. 2021, 807, 151004. [Google Scholar] [CrossRef]
- Vymazal, J. Long-term performance of constructed wetlands with horizontal sub-surface flow: Ten case studies from the Czech Republic. Ecol. Eng. 2011, 37, 54–63. [Google Scholar] [CrossRef]
- Tran, S.; Lundholm, J.T.; Staniec, M.; Robinson, C.E.; Smart, C.C.; Voogt, J.A.; O’Carroll, D.M. Plant survival and growth on extensive green roofs: A distributed experiment in three climate regions. Ecol. Eng. 2018, 127, 494–503. [Google Scholar] [CrossRef]
- Cáceres, N.; Robbiati, F.O.; Suárez, M.; Hick, E.C.; Matoff, E.; Jim, C.Y.; Galetto, L.; Imhof, L. Growth performance of multi-species plant mixtures on an extensive vegetated roof: A two-year experimental study. Urban Ecosyst. 2024, 1–17. [Google Scholar] [CrossRef]
- Johnson, C.; Schweinhart, S.; Buffam, I. Plant species richness enhances nitrogen retention in green roof plots. Ecol. Appl. 2016, 26, 2130–2144. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Sidhu, V.; Sifton, M.A.; Margolis, L.; Drake, J.A.; Thomas, S.C. Biochar and vegetation effects on discharge water quality from organic-substrate green roofs. Sci. Total. Environ. 2024, 922, 171302. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Song, X.; Song, S.; Li, X.; Li, C.; Zhang, Z.; Li, G.; Chen, Q. Effect of Combinations of Green Roof Substrate with Vegetation Coverage on Rainwater Quality Improvement. Pol. J. Environ. Stud. 2023, 33, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.; Paço, T.A.; Luz, A.C.; Palha, P.; Milliken, S.; Kotzen, B.; Branquinho, C.; Pinho, P.; de Carvalho, R.C. Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water 2021, 13, 94. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Bui, X.-T.; Lin, C.; Nguyen, H.-H.; Vo, T.-D.; Tran, L.-L.; Nguyen, T.-B.; Bui, M.-H.; Nguyen, D.-T.; Nguyen, D.-D.; et al. Influence of plant types, bed media and feeding patterns on wastewater treatment performance of wetland roofs. J. Water Process. Eng. 2021, 40, 101972. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, H.; Wang, L. Analysis of the effect of green roof substrate amended with biochar on water quality and quantity of rainfall runoff. Environ. Monit. Assess. 2019, 191, 304. [Google Scholar]
- Guo, J.; Zhang, Y.; Che, S. Performance analysis and experimental study on rainfall water purification with an extensive green roof matrix layer in Shanghai, China. Water Sci. Technol. 2018, 77, 670–681. [Google Scholar] [CrossRef]
- Leite, F.R.; Antunes, M.L.P. Green roof recent designs to runoff control: A review of building materials and plant species used in studies. Ecol. Eng. 2023, 189. [Google Scholar] [CrossRef]
- Pęczkowski, G.; Szawernoga, K.; Kowalczyk, T.; Orzepowski, W.; Pokładek, R. Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia. Sustainability 2020, 12, 4793. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Baryła, A.; Fronczyk, J.; Bus, A.; Mosiej, J. Phosphorus and Metals Leaching from Green Roof Substrates and Aggregates Used in Their Composition. Minerals 2020, 10, 112. [Google Scholar] [CrossRef]
- Rey, C.V.; Franco, N.; Peyre, G.; Rodríguez, J.P. Green Roof Design with Engineered Extensive Substrates and Native Species to Evaluate Stormwater Runoff and Plant Establishment in a Neotropical Mountain Climate. Sustainability 2020, 12, 6534. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Raja, F.D. Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water Res. 2014, 63, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Badavane, A. Preparation of growth substrate to improve runoff quality from green roofs: Physico-chemical characterization, sorption and plant-support experiments. Urban Water J. 2016, 14, 804–810. [Google Scholar] [CrossRef]
- Beck, D.A.; Johnson, G.R.; Spolek, G.A. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ. Pollut. 2011, 159, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Kuoppamäki, K.; Hagner, M.; Lehvävirta, S.; Setälä, H. Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecol. Eng. 2016, 88, 1–9. [Google Scholar] [CrossRef]
- Novotný, M.; Šipka, M.; Miino, M.C.; Raček, J.; Chorazy, T.; Petreje, M.; Tošić, I.; Hlavínek, P.; Marković, M. Influence of different alternative organic substrates as fillings for green roofs on the quality of rainfall runoff. Sustain. Chem. Pharm. 2024, 38. [Google Scholar] [CrossRef]
- Xiong, W.; Li, J.; Wang, H.; Wu, Y.; Li, D.; Xue, J. Biochar Addition and the Runoff Quality of Newly Constructed Green Roofs: A Field Study. Sustainability 2023, 15, 4081. [Google Scholar] [CrossRef]
- Liao, W.; Drake, J.; Thomas, S.C. Biochar granulation enhances plant performance on a green roof substrate. Sci. Total. Environ. 2022, 813, 152638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, C.; Fu, D.; Liu, W. Improvement in pollutant controlling performance by modified aggregate structure in extensive green roof substrate layer. Environ. Sci. Water Res. Technol. 2022, 8, 1709–1718. [Google Scholar] [CrossRef]
- Fei, Y.; Xu, C.; Miao, S.; Fu, D.; Zhang, J. Comparison of rainwater management performance of modified extensive green roof substrate layer with different additives in rainstorm events. Environ. Sci. Water Res. Technol. 2022, 9, 3243–3256. [Google Scholar] [CrossRef]
- Petreje, M.; Sněhota, M.; Chorazy, T.; Novotný, M.; Rybová, B.; Hečková, P. Performance study of an innovative concept of hybrid constructed wetland-extensive green roof with growing media amended with recycled materials. J. Environ. Manag. 2023, 331, 117151. [Google Scholar] [CrossRef] [PubMed]
- van der Kolk, H.J.; van den Berg, P.; van Veen, T.; Bezemer, M. Substrate composition impacts long-term vegetation development on blue-green roofs: Insights from an experimental roof and greenhouse study. Ecol. Eng. 2023, 186, 106847. [Google Scholar] [CrossRef]
- Cakar, H.; Saracoglu, O.A.; Akat, H.; Kilic, C.C.; Adanacioglu, H. THE POTENTIAL FOR USING DIFFERENT SUBSTRATES IN GREEN ROOFS. J. Environ. Eng. Landsc. Manag. 2023, 31, 44–51. [Google Scholar] [CrossRef]
- Vannucchi, F.; Bibbiani, C.; Caudai, C.; Bretzel, F. Mediterranean Extensive Green Roof Self-Sustainability Mediated by Substrate Composition and Plant Strategy. Horticulturae 2023, 9, 1117. [Google Scholar] [CrossRef]
- Meng, R.; Zhang, Q.; Li, D.; Wang, H. Influence of Substrate Layer Thickness and Biochar on the Green Roof Capacity to Intercept Rainfall and Reduce Pollution in Runoff. Pol. J. Environ. Stud. 2021, 30, 4085–4103. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, Q.; Zhao, S.; He, T.; Song, N. Effects of pretreatments on physical and chemical characteristics of wheat straw used as a maintenance-free compressed green roof substrate material. J. Clean. Prod. 2020, 277, 123381. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A.; Baryła, A. The use of reactive material for limiting P-leaching from green roof substrate. Water Sci. Technol. 2016, 73, 3027–3032. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Liu, X.; Luo, H.; Zhang, K.; Fu, X.; Li, M.; Li, X.; Jiang, B.; Chen, J.; et al. Whether the carbon emission from green roofs can be effectively mitigated by recycling waste building material as green roof substrate during five-year operation? Environ. Sci. Pollut. R. 2020, 27, 40893–40906. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, H.; Li, T.; Qi, Y. Application of stabilized sludge to extensive green roofs in Shanghai: Feasibility and nitrogen leaching control. Sci. Total. Environ. 2020, 732, 138898. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Si, J.; Xi, H. Runoff retention assessment for extensive green roofs and prioritization of structural factors at runoff plot scale using the Taguchi method. Ecol. Eng. 2019, 138, 281–288. [Google Scholar] [CrossRef]
- Agra, H.; Solodar, A.; Bawab, O.; Levy, S.; Kadas, G.J.; Blaustein, L.; Greenbaum, N. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs. Sci. Total. Environ. 2018, 633, 1272–1279. [Google Scholar] [CrossRef]
- Zhang, W.; Zhong, X.; Che, W. Nutrient leaching from extensive green roofs with different substrate compositions: A laboratory study. Water Sci. Technol. 2017, 77, 1007–1014. [Google Scholar] [CrossRef]
- Piscitelli, L.; Rivier, P.-A.; Mondelli, D.; Miano, T.; Joner, E.J. Assessment of addition of biochar to filtering mixtures for potential water pollutant removal. Environ. Sci. Pollut. Res. 2018, 25, 2167–2174. [Google Scholar] [CrossRef]
- Monteiro, C.; Calheiros, C.; Martins, J.P.; Costa, F.M.; Palha, P.; de Freitas, S.S.; Ramos, N.M.M.; Castro, P. Substrate influence on aromatic plant growth in extensive green roofs in a Mediterranean climate. Urban Ecosyst. 2017, 20, 1347–1357. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Lehvävirta, S. Mitigating nutrient leaching from green roofs with biochar. Landsc. Urban Plan. 2016, 152, 39–48. [Google Scholar] [CrossRef]
- Malcolm, E.G.; Reese, M.L.; Schaus, M.H.; Ozmon, I.M.; Tran, L.M. Measurements of nutrients and mercury in green roof and gravel roof runoff. Ecol. Eng. 2014, 73, 705–712. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Hou, P.; Wan, W.; Li, R.; Ren, Y.; Ouyang, Z. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China. J. Environ. Manag. 2014, 132, 178–187. [Google Scholar] [CrossRef]
- Harper, G.E.; Limmer, M.A.; Showalter, W.E.; Burken, J.G. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecol. Eng. 2015, 78, 127–133. [Google Scholar] [CrossRef]
- Beecham, S.; Razzaghmanesh, M. Water quality and quantity investigation of green roofs in a dry climate. Water Res. 2015, 70, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.S.; Goldenfum, J.A.; da Silveira, A.L.; Bertani DallAgnol, A.L.; Loebens, L.; Demarco, C.F.; Leandro, D.; Nadaleti, W.C.; Quadro, M.S. The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil. Environ. Sci. Pollut. R. 2020, 27, 9520–9534. [Google Scholar] [CrossRef] [PubMed]
- Bui Xuan, T.; Phan Thi Hai, V.; Nguyen Thanh, T.; Vo Thi Dieu, H.; Nguyen Phuoc, D.; Koottatep, T. Performance of wetland roof with Melampodium paludosum treating septic tank effluent. Desalin. Water. Treat. 2014, 52, 1070–1076. [Google Scholar]
- Petousi, I.; Thomaidi, V.; Kalogerakis, N.; Fountoulakis, M.S. Removal of pathogens from greywater using green roofs combined with chlorination. Environ. Sci. Pollut. Res. 2022, 30, 22560–22569. [Google Scholar] [CrossRef] [PubMed]
- Sá, T.S.W.; Najjar, M.K.; Hammad, A.W.A.; Vazquez, E.; Haddad, A. Assessing rainwater quality treated via a green roof system. Clean Technol. Environ. Policy 2021, 24, 645–660. [Google Scholar] [CrossRef]
- Gong, K.; Wu, Q.; Peng, S.; Zhao, X.; Wang, X. Research on the characteristics of the water quality of rainwater runoff from green roofs. Water Sci. Technol. 2014, 70, 1205–1210. [Google Scholar] [CrossRef]
- Speak, A.; Rothwell, J.; Lindley, S.; Smith, C. Metal and nutrient dynamics on an aged intensive green roof. Environ. Pollut. 2014, 184, 33–43. [Google Scholar] [CrossRef]
- Akther, M.; He, J.; Chu, A.; van Duin, B. Nutrient leaching behavior of green roofs: Laboratory and field investigations. Sci. Total. Environ. 2020, 754, 141841. [Google Scholar] [CrossRef]
- Buffam, I.; Mitchell, M.E.; Durtsche, R.D. Environmental drivers of seasonal variation in green roof runoff water quality. Ecol. Eng. 2016, 91, 506–514. [Google Scholar] [CrossRef]
- Menge, D.N.L.; Field, C.B. Simulated global changes alter phosphorus demand in annual grassland. Glob. Chang. Biol. 2007, 13, 2582–2591. [Google Scholar] [CrossRef]
- Rinnan, R.; Michelsen, A.; Bååth, E.; Jonasson, S. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter. Soil Biol. Biochem. 2007, 39, 3014–3023. [Google Scholar] [CrossRef]
- Akther, M.; He, J.; Chu, A.; van Duin, B. Chemical leaching behaviour of a full-scale green roof in a cold and semi-arid climate. Ecol. Eng. 2020, 147, 105768. [Google Scholar] [CrossRef]
- Teemusk, A.; Teemusk, Ü. Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events. Ecol. Eng. 2007, 30, 271–277. [Google Scholar] [CrossRef]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Todorov, D.; Driscoll, C.T.; Todorova, S.; Montesdeoca, M. Water quality function of an extensive vegetated roof. Sci. Total. Environ. 2018, 625, 928–939. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, J.; Fang, X.; Yin, D.; Xie, P.; Nie, L. Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff. Sci. Total. Environ. 2020, 732, 139248. [Google Scholar] [CrossRef]
- Guo, B.; Arndt, S.; Miller, R.; Lu, N.; Farrell, C. Are succulence or trait combinations related to plant survival on hot and dry green roofs? Urban. For. Urban. Gree. 2021, 64, 127248. [Google Scholar] [CrossRef]
- Sultana, N.; Akib, S.; Ashraf, M.A.; Abidin, M.R.Z. Quality assessment of harvested rainwater from green roofs under tropical climate. Desalination Water Treat. 2015, 1–8. [Google Scholar] [CrossRef]
- Ramprasad, C.; Smith, C.S.; Memon, F.A.; Philip, L. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.T.; Ntoulas, N.; Bourtsoukli, D.; Bertsouklis, K. Effect of Seawater Irrigation on Arthrocnemum macrostachyum Growing in Extensive Green Roof Systems under Semi-Arid Mediterranean Climatic Conditions. Agronomy 2023, 13, 1198. [Google Scholar] [CrossRef]
- Zehnsdorf, A.; Blumberg, M.; Müller, R.A. Helophyte mats (wetland roofs) with high evapotranspiration rates as a tool for decentralised rainwater management—process stability improved by simultaneous greywater treatment. Water Supply 2018, 19, 808–814. [Google Scholar] [CrossRef]
- Avery, L.M.; Frazer-Williams, R.A.; Winward, G.; Shirley-Smith, C.; Liu, S.; Memon, F.A.; Jefferson, B. Constructed wetlands for grey water treatment. Ecohydrol. Hydrobiol. 2007, 7, 191–200. [Google Scholar] [CrossRef]
- Winward, G.P.; Avery, L.M.; Frazer-Williams, R.; Pidou, M.; Jeffrey, P.; Stephenson, T.; Jefferson, B. A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecol. Eng. 2007, 32, 187–197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Yang, P.; Wang, B.; Wu, S.; Zhao, M.; Zheng, X.; Wang, Z.; Zhang, Y.; Fan, C. Green Roof Systems for Rainwater and Sewage Treatment. Water 2024, 16, 2090. https://doi.org/10.3390/w16152090
Yan J, Yang P, Wang B, Wu S, Zhao M, Zheng X, Wang Z, Zhang Y, Fan C. Green Roof Systems for Rainwater and Sewage Treatment. Water. 2024; 16(15):2090. https://doi.org/10.3390/w16152090
Chicago/Turabian StyleYan, Jing, Pu Yang, Binjie Wang, Suqing Wu, Min Zhao, Xiangyong Zheng, Zhiquan Wang, Yejian Zhang, and Chunzhen Fan. 2024. "Green Roof Systems for Rainwater and Sewage Treatment" Water 16, no. 15: 2090. https://doi.org/10.3390/w16152090
APA StyleYan, J., Yang, P., Wang, B., Wu, S., Zhao, M., Zheng, X., Wang, Z., Zhang, Y., & Fan, C. (2024). Green Roof Systems for Rainwater and Sewage Treatment. Water, 16(15), 2090. https://doi.org/10.3390/w16152090