Preparation of Bimetallic CoFe@CSC-700 Carbonated Microspheres and Activated Peroxymonosulfate for Degradation of Levofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of CoFe@CSC-X Carbonized Microspheres
2.4. Evaluation of the Catalytic Performance
2.5. Analytical Method
3. Results
3.1. Catalyst Characterization
3.2. Catalytic Performance
3.3. Evaluation of the Stability and Performance of CoFe@CSC-700
3.4. Identification of ROS and Proposed Catalytic Mechanism
3.5. LEV Degradation Products and Pathways
3.6. Toxicity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, J.; Chen, Y.; Li, X.; Lin, J.; Cheng, J.; Hu, Y. A “sandwich layer” of N-doped carbon nanotubes coated on the surface of oxidized iron-foam is used to drive peroxymonosulfate activation. Sep. Purif. Technol. 2023, 311, 123273. [Google Scholar] [CrossRef]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, H.; Hou, Y.L.; Wang, C.; Zhang, K.Y.; Man, Z.H.; Shang, J.W.; Cheng, X.W. Green synthesis of Co-Ce ZIF derivatives for enhanced O3/PMS degradation oflevofloxacin. J. Environ. Chem. Eng. 2024, 12, 112158. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Gao, P.; Sun, D.; Jin, L.; Ma, L.; Yang, L.; Zhao, J. Enhanced PMS Activation by Highly Dispersed Mn-Ce Bimetallic Oxide on Carbon Nanotubes for Degradation of Phenol. Water 2023, 15, 2243. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, G.; Xu, Y.; Yu, P.; Sun, Y. Nitrogen Doped Cobalt Anchored on the Used Resin-Based Catalyst to Activate Peroxymonosulfate for the Removal of Ibuprofen. Water 2022, 14, 3754. [Google Scholar] [CrossRef]
- Mo, Y.; Xu, W.; Zhang, X.; Zhou, S. Enhanced Degradation of Rhodamine B through Peroxymonosulfate Activated by a Metal Oxide/Carbon Nitride Composite. Water 2022, 14, 2054. [Google Scholar] [CrossRef]
- Huang, K.C.; Zhao, Z.; Hoag, G.; Dahmani, A.; Block, P. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 2005, 61, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.D.; Liu, X.T.; Ma, J.; Lin, C.Y.; Li, X.W.; Zhang, H.J. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Moussavi, G.; Giannakis, S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem. Eng. J. 2021, 411, 127957. [Google Scholar] [CrossRef]
- He, X.; Mezyk, S.P.; Michael, I.; Fatta-Kassinos, D.; Dionysiou, D.D. Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation. J. Hazard. Mater. 2014, 279, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ji, Y.; Zheng, G.; Lu, J.; Kong, D.; Yin, X.; Zhou, Q.S. Degradation of atrazine in heterogeneous Co3O4 activated peroxymonosulfate oxidation process: Kinetics, mechanisms, and reaction pathways. Chem. Eng. J. 2017, 330, 831–839. [Google Scholar] [CrossRef]
- Hao, F.; Guo, W.; Wang, A.; Leng, Y.; Li, H. Intensifcation of sonochemical degradation of ammonium perffuorooctanoate by persulfate oxidant. Ultrason. Sonochem. 2014, 21, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, L.; Li, Y.X.; Li, W.; Zhou, L.X.; Lan, Y.Q.; Li, Y. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate. Chem. Eng. J. 2020, 384, 123257. [Google Scholar] [CrossRef]
- Huang, J.Z.; Zhang, H.C. Mn-based catalysts for sulfate radical-based advanced oxidation processes: A Review. Environ. Int. 2019, 133, 105141. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.J.; Choi, H.; Al-Abed, S.R.; Dionysiou, D.D. Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B Environ. 2009, 88, 462–469. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Luo, C.G.; Luo, M.G.; Wang, Q.L.; Wang, J.; Liao, Z.W.; Chen, Z.L.; Chen, Z.Q. Understanding the synergetic effect from foreign metals in bimetallic oxides for PMS activation: A common strategy to increase the stoichiometric efficiency of oxidants. Chem. Eng. J. 2020, 381, 122587. [Google Scholar] [CrossRef]
- Zhou, R.; Zhao, J.; Shen, N.F.; Ma, T.G.; Su, Y. Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles. Chemosphere 2018, 197, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Pujol, A.A.; Leo’n, I.; Ca’rdenas, J.; Sepúlveda-Guzmán, S.; Manríquez, J.; Sirés, I.; Bustos, E. Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4- chitosan composite and a boron-doped diamond anode. Electrochim. Acta 2020, 337, 135784. [Google Scholar] [CrossRef]
- Baran, T. Pd NPs@Fe3O4/chitosan/pumice hybrid beads: A highly active, magnetically retrievable, and reusable nanocatalyst for cyanation of aryl halides. Carbohyd. Polym. 2020, 237, 116105. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.J.; Zheng, X.C.; Guan, X.X.; Liu, P.U. Chitosan supported palladium nanoparticles: The novel catalysts for hydrogen generation from hydrolysis of ammonia borane. Mater. Res. Bull. 2018, 103, 89–95. [Google Scholar] [CrossRef]
- Shang, Z.X.; Chen, Z.L.; Zhang, Z.B.; Yu, J.; Tan, S.Z. CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a Prussian blue analogue. J. Alloy. Compd. 2018, 740, 743–753. [Google Scholar] [CrossRef]
- Ge, B.C.; Li, K.X.; Fu, Z.; Pu, L.T.; Zhang, X. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell. Bioresour. Technol. 2015, 95, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Ye, J.; Shi, L.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096. [Google Scholar] [CrossRef]
- Zakaria, M.B.; Chikyow, T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments. Coord. Chem. Rev. 2017, 352, 328–345. [Google Scholar] [CrossRef]
- Li, M.Q.; Luo, R.; Wang, C.H.; Zhang, M.; Zhang, W.X.; Klu, P.K.; Yan, Y.B.; Qi, J.W.; Sun, X.Y.; Wang, L.J.; et al. Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation. Chem. Eng. J. 2019, 372, 774–784. [Google Scholar] [CrossRef]
- Shang, Y.N.; Chen, C.; Zhang, P.; Yue, Q.Y.; Li, Y.W.; Gao, B.Y.; Xu, X. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process. Chem. Eng. J. 2019, 375, 122004. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano. Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.Y.; Liu, B.B.; Liu, G.Y.; Su, K.D.; Li, J.H. N-doped bamboo-like CNTs combined with CoFe-CoFe2O4 as a highly efficient electrocatalyst towards oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 6629–6635. [Google Scholar] [CrossRef]
- Zhang, L.J.; Su, Z.X.; Jiang, F.L.; Yang, L.L.; Qian, J.J.; Zhou, Y.Y.; Li, W.M.; Hong, M.C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602. [Google Scholar] [CrossRef]
- Duan, X.G.; Ao, Z.M.; Li, D.G.; Sun, H.Q.; Suvorova, A.; Saunders, M.; Wang, G.X.; Wan, S.B. Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon 2016, 103, 404–411. [Google Scholar] [CrossRef]
- Huo, L.M.; Wang, T.; Xuan, K.; Li, L.; Pu, Y.F.; Li, C.X.; Qiao, C.Z.; Yang, H.; Bai, Y. Synthesis of dimethyl carbonate from CO2 and methanol over Zr-based catalysts with different chemical environments. Catalysts 2021, 11, 710. [Google Scholar] [CrossRef]
- Zhou, X.C.; Chen, S.Q.; Zhou, M.J.; Li, M.; Lan, S.; Feng, T. Highly efficient cobalt-based amorphous catalyst for peroxymonosulfate activation toward wastewater remediation. Rare Met. 2023, 42, 1160–1174. [Google Scholar] [CrossRef]
- Zhao, L.; Li, W.; Lin, L.; Guo, W.; Zhao, W.; Tang, X.; Gong, D.; Li, Q.; Xu, P. Field investigation on river hydrochemical characteristics and larval and juvenile fish in the source region of the Yangtze River. Water 2019, 11, 1342. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Aimanova, N.A.; Parmanbek, N.; Temirgaziyev, B.S.; Barsbay, M.; Zdorovets, M.V. Serratula coronata L. mediated synthesis of ZnO nanoparticles and their application for the removal of alizarin Yellow R by photocatalytic degradation and ddsorption. Nanomaterials 2022, 12, 3293. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Feng, S.F.; Ma, X.; Tan, C.; Wang, H.; Zhou, S.; Zhang, T.; Li, J. Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4. Sep. Purif. Technol. 2016, 167, 181–189. [Google Scholar] [CrossRef]
- Zeng, Q.Y.; Tan, J.; Gao, B.B.; Cai, T.; Zhang, Q.Y.; Liu, Y.L.; Chang, S.; Zhao, S.F.; Wu, S.Q. Embedding Co in perovskite MoO3 for superior catalytic oxidation of refractory organic pollutants with peroxymonosulfate. Chemosphere 2023, 314, 137726. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, Z.Y.; Zheng, Z.; Li, B. Cobalt bismuth oxide with cobalt(II/III) as a new stable peroxymonosulfate activator for effective degradation, mineralization, and detoxification of diclofenac in water. J. Clean. Prod. 2023, 365, 132781. [Google Scholar] [CrossRef]
- Zhu, S.J.; Wang, Z.W.; Ye, C.; Deng, J.; Ma, X.Y.; Xu, Y.P.; Wang, L.; Tang, Z.; Luo, H.; Li, X.Y. Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation. Chem. Eng. J. 2022, 432, 134180. [Google Scholar] [CrossRef]
- Yuan, R.X.; Jiang, M.L.; Gao, S.M.; Wang, Z.H.; Wang, H.Y.; Boczkaj, G.; Liu, Z.J.; Ma, J.; Li, Z.J. 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chem. Eng. J. 2020, 80, 122447. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Ji, W.Q.; Li, X.Y.; Lin, H.D.; Chen, H.J.; Bi, F.K.; Zheng, Z.H.; Xu, J.C.; Zhang, X.D. Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0. J. Hazard. Mater. 2022, 424, 127640. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Ma, R.; Chai, G.; Chen, Y.; Bai, L.; Wang, D.; Qian, J.; Chen, G.H. Nitrogen-doped carbonized polyaniline(N-CPANI) for peroxydisulfate(PDS) activation towards efficient degradation of doxycycline(DOX) via the non-radical pathway dominated by electron transfer. Chem. Eng. J. 2023, 453, 139810. [Google Scholar] [CrossRef]
- Wang, A.Q.; Zheng, Z.K.; Wang, H.; Chen, Y.W.; Luo, C.H.; Liang, D.J.; Hu, B.; Qiu, R.L.; Yan, K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl. Catal. B-Environ. 2020, 277, 119171. [Google Scholar] [CrossRef]
- Ye, F.; Su, Y.M.; Li, R.P.; Sun, W.; Pu, M.J.; Yang, C.; Yang, W.C.; Huang, H.M.; Zhang, Q.C.; Wong, J.W.C. Activation of persulfate on fluorinated carbon: Role of semi-ionic C-F in inducing mechanism transition from radical to electron-transfer nonradical pathway. Appl. Catal. B-Environ. 2023, 337, 122992. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Y.Z. Co3O4/C-PC composite derived from pomelo peel-loaded ZIF-67 for activating peroxymonosulfate(PMS) to degrade ciprofloxacin. J. Water Process. Eng. 2022, 49, 103043. [Google Scholar] [CrossRef]
- Zhong, Y.W.; Shih, K.M.; Diao, Z.H.; Gang, S.; Su, M.H.; Hou, L.A.; Chen, D.Y.; Kong, L.J. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chem. Eng. J. 2021, 417, 129225–129235. [Google Scholar] [CrossRef]
- Pi, Y.Q.; Gao, H.Q.; Cao, Y.D.; Cao, R.L.; Wang, Y.B.; Sun, J.H. Cobalt ferrite supported on carbon nitride matrix prepared using wastebattery materials as a peroxymonosulfate activator for the degradation of levofloxacin hydrochloride. Chem. Eng. J. 2020, 379, 122377–122385. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhan, R.; Zhang, M.; Li, J.N.; Wang, Z.P.; Mi, H.S.; Zhang, Y.X. Insights into the performance, mechanism, and ecotoxicity of levofloxacin degradation in CoFe2O4 catalytic peroxymonosulfate process. J. Environ. Chem. Eng. 2022, 10, 107435–107445. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, P.F.; Han, S.; Zulhumar, M.; Wu, D.D. Preparation of magnetic copper ferrite nanoparticle as peroxymonosulfate activatingcatalyst for effective degradation of levofloxacin. Water Sci. Technol. 2022, 85, 645–663. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Wu, Y.Z.; Zhang, X.X.; Zhou, L.; Lu, S.; Zhang, J.L.; Liu, Y.D.; Lei, J.Y. Enhanced PMS activation by Mn2O3-loaded h-BN for levofloxacin removal: Unveiling the dominant influence of non-free radical pathway and N-Mn-mediated promotion of stable, long-lived Mn(IV) species. Appl. Surf. Sci. 2024, 657, 159716. [Google Scholar] [CrossRef]
- Li, M.K.; Huang, F.L.; Hu, L.; Sun, W.; Li, E.P.; Xiong, D.L.; Zhong, H.; He, Z.G. Efficient activation of peroxymonosulfate by a novel catalyst prepared directly from electrolytic manganese slag for degradation of recalcitrant organic pollutes. Chem. Eng. J. 2020, 401, 126085. [Google Scholar] [CrossRef]
- He, Y.X.; Qian, J.; Wang, P.F.; Wu, J.; Lu, B.H.; Tang, S.J.; Gao, P. Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light. Chem. Eng. J. 2022, 431, 133933. [Google Scholar] [CrossRef]
- Yuan, S.H.; Liao, P.; Alshawabkeh, A.N. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environ. Sci. Technol. 2014, 48, 656–663. [Google Scholar] [CrossRef]
- Chen, L.W.; Zuo, X.; Zhou, L.; Huang, Y.; Yang, S.J.; Cai, T.M.; Ding, D.H. Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism. Chem. Eng. J. 2018, 345, 364–374. [Google Scholar] [CrossRef]
- Zhu, J.L.; Wang, J.; Shan, C.; Zhang, J.; Lv, L.; Pan, B.C. Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation. Chem. Eng. J. 2019, 375, 122009. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.G.; Zhang, Y.L.; Tang, W.H.; Cheng, X.; Li, W. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chem. Eng. J. 2018, 343, 128–137. [Google Scholar] [CrossRef]
- Sheng, J.L.; Guo, S.K.; Yuan, C.; Nie, X.R.; Cui, P.L.; Jiang, H.M. Degradation bensulfuron-methyl by magnetic CoFe alloy@N-doped graphitized carbon derived from CoFe2O4 activated by peroxymonosulfate. Chem. Eng. J. 2023, 466, 143158. [Google Scholar] [CrossRef]
- Su, S.N.; Guo, W.L.; Leng, Y.Q.; Yi, C.L.; Ma, Z.M. Heterogeneous activation of Oxone by CoxFe3xO4 nanocatalysts for degradation of rhodamine B. J. Hazard. Mater. 2013, 244–245, 736–742. [Google Scholar] [CrossRef]
- Ma, W.J.; Wang, N.; Du, Y.C.; Tong, T.Z.; Zhang, L.J.; Andrew Lin, K.Y.; Han, X.J. One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate. Chem. Eng. J. 2019, 356, 1022–1031. [Google Scholar] [CrossRef]
- Li, X.N.; Rykov, A.I.; Zhang, B.; Zhang, Y.J.; Wang, J.H. Graphene encapsulated FexCoy nanocages derived from metal-organic frameworks as efficient activators for peroxymonosulfate. Catal. Sci. Technol. 2016, 6, 7486–7494. [Google Scholar] [CrossRef]
- Yan, J.W.; Lin, G.; Chai, S.Y.; Guo, C.; Zhang, W.; Wan, H.Y. ZIF-67 loaded lotus leaf-derived biochar for efficient peroxymonosulfate activation for sustained levofloxacin degradation. Chem. Eng. J. 2023, 458, 141456. [Google Scholar] [CrossRef]
- Zhang, G.S.; Wang, Y.; Chen, M.; Xu, J.X.; Wang, L. ZIF-67-derived carbon@Co3S4/CoSO4/MnO polyhedron to activate peroxymonosulfate for degrading levofloxacin: Synergistic effect and mechanism. Chem. Eng. J. 2023, 451, 138976. [Google Scholar] [CrossRef]
- Xue, X.J.; Liao, W.D.; Liu, D.L.; Zhang, X.D.; Huang, Y.M. MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: Role of surface hydroxyl and oxygen vacancies. Sep. Purif. Technol. 2023, 306, 122560. [Google Scholar] [CrossRef]
- Deng, Q.C.; Zhang, X.D.; Chang, L.; Chai, H.X.; Huang, Y.M. The MOF/LDH derived heterostructured Co3O4/MnCo2O4 composite for enhanced degradation of levofloxacin by peroxymonosulfate activation. Sep. Purif. Technol. 2022, 294, 121182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Chen, Y.; Guo, X.; Peng, Y.; Cheng, J. Preparation of Bimetallic CoFe@CSC-700 Carbonated Microspheres and Activated Peroxymonosulfate for Degradation of Levofloxacin. Water 2024, 16, 1818. https://doi.org/10.3390/w16131818
Hu T, Chen Y, Guo X, Peng Y, Cheng J. Preparation of Bimetallic CoFe@CSC-700 Carbonated Microspheres and Activated Peroxymonosulfate for Degradation of Levofloxacin. Water. 2024; 16(13):1818. https://doi.org/10.3390/w16131818
Chicago/Turabian StyleHu, Tongke, Yazhen Chen, Xiaolan Guo, Yongjun Peng, and Jianhua Cheng. 2024. "Preparation of Bimetallic CoFe@CSC-700 Carbonated Microspheres and Activated Peroxymonosulfate for Degradation of Levofloxacin" Water 16, no. 13: 1818. https://doi.org/10.3390/w16131818
APA StyleHu, T., Chen, Y., Guo, X., Peng, Y., & Cheng, J. (2024). Preparation of Bimetallic CoFe@CSC-700 Carbonated Microspheres and Activated Peroxymonosulfate for Degradation of Levofloxacin. Water, 16(13), 1818. https://doi.org/10.3390/w16131818