Efficient and Rapid Combined Electrocoagulation–Filtration of Arsenic in Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design and Fabrication of Combined ECF Systems
2.3. Experimental Set-Up and Procedures
2.4. Analytical Methods
3. Results
3.1. pH, EC and Turbidity Changes after ECF Treatment
3.2. Effect on Sulfate and Fluoride Removal
3.3. Effect of ECF Treatment on Interfering Ions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Can, B.Z.; Boncukcuoglu, R.; Yilmaz, A.E.; Fil, B.A. Effect of Some Operational Parameters on the Arsenic Removal by Electrocoagulation Using Iron Electrode. J. Environ. Health Sci. Eng. 2014, 12, 95. [Google Scholar] [CrossRef]
- Kobya, M.; Soltani, R.D.C.; Omwene, P.I.; Khataee, A. A Review on Decontamination of Arsenic-Contained Water by Electrocoagulation: Reactor Configurations and Operating Cost along with Removal Mechanisms. Environ. Technol. Innov. 2020, 17, 100519. [Google Scholar] [CrossRef]
- Awa, S.H.; Hadibarata, T. Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil. Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Shafiquzzaman, M.; Azam, M.S.; Nakajima, J.; Bari, Q.H. Investigation of Arsenic Removal Performance by a Simple Iron Removal Ceramic Filter in Rural Households of Bangladesh. Desalination 2011, 265, 60–66. [Google Scholar] [CrossRef]
- Masscheleyn, P.H.; Delaune, R.D.; Patrick, W.H. Effect of Redox Potential and PH on Arsenic Speciation and Solubility in a Contaminated Soil. Environ. Sci. Technol. 1991, 25, 1414–1419. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; LoIacono, N.J.; Kline, J.; Factor-Litvak, P.; Van Geen, A.; Mey, J.L.; Levy, D.; Abramson, R.; Schwartz, A.; et al. A Cross-Sectional Study of Well Water Arsenic and Child IQ in Maine Schoolchildren. Environ. Health 2014, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Asadullah, M.N.; Chaudhury, N. Poisoning the Mind: Arsenic Contamination of Drinking Water Wells and Children’s Educational Achievement in Rural Bangladesh. Econ. Educ. Rev. 2011, 30, 873–888. [Google Scholar] [CrossRef]
- Demissie, S.; Mekonen, S.; Awoke, T.; Teshome, B.; Mengistie, B. Examining Carcinogenic and Noncarcinogenic Health Risks Related to Arsenic Exposure in Ethiopia: A Longitudinal Study. Toxicol. Rep. 2024, 12, 100–110. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A Meta-Analysis of the Distribution, Sources and Health Risks of Arsenic-Contaminated Groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Uddin, M.M.; Harun-Ar-Rashid, A.K.M.; Hossain, S.M.; Hafiz, M.A.; Nahar, K.; Mubin, S.H. Slow Arsenic Poisoning of the Contaminated Groundwater Users. Int. J. Environ. Sci. Technol. 2006, 3, 447–453. [Google Scholar]
- Chiavola, A.; D’Amato, E.; Gavasci, R.; Sirini, P. Arsenic Removal from Groundwater by Ion Exchange and Adsorption Processes: Comparison of Two Different Materials. Water Sci. Technol. Water Supply 2015, 15, 981–989. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S.; Shrestha, B. Arsenic Removal Fromwater by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef]
- Pezeshki, H.; Hashemi, M.; Rajabi, S. Removal of Arsenic as a Potentially Toxic Element from Drinking Water by Filtration: A Mini Review of Nanofiltration and Reverse Osmosis Techniques. Heliyon 2023, 9, e14246. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Alavi Moghaddam, M.R.; Arami, M. Optimization of Acid Black 172 Decolorization by Electrocoagulation Using Response Surface Methodology. Iran. J. Environ. Health Sci. Eng. 2012, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Shahedi, A.; Darban, A.K.; Jamshidi-Zanjani, A.; Homaee, M. An Overview of the Application of Electrocoagulation for Mine Wastewater Treatment. Environ. Monit. Assess. 2023, 195, 522. [Google Scholar] [CrossRef] [PubMed]
- Mehri, M.; Fallah, N.; Nasernejad, B. Mechanisms of Heavy Metal and Oil Removal from Synthetic Saline Oilfield Produced Water by Electrocoagulation. npj Clean. Water 2021, 4, 45. [Google Scholar] [CrossRef]
- Nguyen, T.T.Q.; Loganathan, P.; Dinh, B.K.; Nguyen, T.V.; Vigneswaran, S.; Ngo, H.H. Removing Arsenate from Water Using Batch and Continuous-Flow Electrocoagulation with Diverse Power Sources. J. Water Process Eng. 2021, 41, 102028. [Google Scholar] [CrossRef]
- Oh, C.; Pak, S.; Han, Y.S.; Ha, N.T.H.; Hong, M.; Ji, S. Field Demonstration of Solar-Powered Electrocoagulation Water Treatment System for Purifying Groundwater Contaminated by Both Total Coliforms and Arsenic. Environ. Technol. 2021, 42, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.R.; Chaudhari, S.; Khilar, K.C.; Mahajan, S.P. Removal of Arsenic from Water by Electrocoagulation. Chemosphere 2004, 55, 1245–1252. [Google Scholar] [CrossRef]
- Kobya, M.; Gebologlu, U.; Ulu, F.; Oncel, S.; Demirbas, E. Removal of Arsenic from Drinking Water by the Electrocoagulation Using Fe and Al Electrode. Electrochim. Acta 2011, 56, 5060–5070. [Google Scholar] [CrossRef]
- Montefalcon, M.F.V.; Chiong, M.R.; Resurreccion, A.C.; Garcia-Segura, S.; Ocon, J.D. Arsenic Removal by Advanced Electrocoagulation Processes: The Role of Oxidants Generated and Kinetic Modeling. Catalysts 2020, 10, 928. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, C.; Quan, B.; Tang, Y.; Zhang, Y.; Su, C.; Zhao, G. Electrocoagulation Coupled with Conductive Ceramic Membrane Filtration for Wastewater Treatment: Toward Membrane Modification, Characterization, and Application. Water Res. 2022, 220, 118612. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Huang, H.; Qian, Y.; Zhang, Z.; Wu, H. Integrated Electrocoagulation and Membrane Filtration for PAH Removal from Realistic Industrial Wastewater: Effectiveness and Mechanisms. RSC Adv. 2017, 7, 52366–52374. [Google Scholar] [CrossRef]
- McBeath, S.T.; Hajimalayeri, A.; Jasim, S.Y.; Mohseni, M. Coupled Electrocoagulation and Oxidative Media Filtration for the Removal of Manganese and Arsenic from a Raw Ground Water Supply. J. Water Process Eng. 2021, 40, 101983. [Google Scholar] [CrossRef]
- Ahmed, J.; Wong, L.P.; Chua, Y.P.; Channa, N. Drinking Water Quality Mapping Using Water Quality Index and Geospatial Analysis in Primary Schools of Pakistan. Water 2020, 12, 3382. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Vo, L.D.; Nguyen, T.X.; Quang, N.X. The Interactive Effects of Natural Factor and Pollution Source on Surface Water Quality in the Lower Mekong River Basin, Southwestern Vietnam. Water Resour. 2020, 47, 865–876. [Google Scholar]
- Das, D.; Nandi, B.K. Arsenic Removal from Tap Water by Electrocoagulation: Investigation of Process Parameters, Kinetic Analysis, and Operating Cost. J. Dispers. Sci. Technol. 2021, 42, 328–337. [Google Scholar] [CrossRef]
- Ansari, K.; Shrikhande, A.; Malik, M.A.; Alahmadi, A.A.; Alwetaishi, M.; Alzaed, A.N.; Elbeltagi, A. Optimization and Operational Analysis of Domestic Greywater Treatment by Electrocoagulation Filtration Using Response Surface Methodology. Sustainability 2022, 14, 15230. [Google Scholar] [CrossRef]
- Padmaja, K.; Cherukuri, J.; Anji Reddy, M. A Comparative Study of the Efficiency of Chemical Coagulation and Electrocoagulation Methods in the Treatment of Pharmaceutical Effluent. J. Water Process Eng. 2020, 34, 101153. [Google Scholar] [CrossRef]
- Mendez-Ruiz, J.I.; Medina-Toala, A.N.; Gutierrez, L.; Valverde-Armas, P.E. Comparative Evaluation of an Advanced Electrocoagulation Treatment System versus a Conventional Lime Softening Treatment for Removing Ca2+, SO42−, and Mn in Groundwater. Case Stud. Chem. Environ. Eng. 2023, 8, 100448. [Google Scholar] [CrossRef]
- Ahangarnokolaei, M.A.; Ganjidoust, H.; Ayati, B. Optimization of Parameters of Electrocoagulation/Flotation Process for Removal of Acid Red 14 with Mesh Stainless Steel Electrode. J. Water Reuse Desalination 2018, 8, 278–292. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride Contamination, Consequences and Removal Techniques in Water: A Review. Environ. Sci. Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- Sharma, A.K.; Chopra, A.K. Removal of Nitrate and Sulphate from Biologically Treated Municipal Wastewater by Electrocoagulation. Appl. Water Sci. 2017, 7, 1239–1246. [Google Scholar] [CrossRef]
- Malakootian, M.; Yousefi, N.; Fatehizadeh, A. Survey Efficiency of Electrocoagulation on Nitrate Removal from Aqueous Solution. Int. J. Environ. Sci. Technol. 2011, 8, 107–114. [Google Scholar]
- Amarine, M.; Lekhlif, B.; Sinan, M.; El Rharras, A.; Echaabi, J. Treatment of Nitrate-Rich Groundwater Using Electrocoagulation with Aluminum Anodes. Groundw. Sustain. Dev. 2020, 11, 100371. [Google Scholar] [CrossRef]
- Medina-Collana, J.T.; Reyna-Mendoza, G.E.; Montaño-Pisfil, J.A.; Rosales-Huamani, J.A.; Franco-Gonzales, E.J.; Córdova García, X. Evaluation of the Performance of the Electrocoagulation Process for the Removal of Water Hardness. Sustainability 2022, 15, 590. [Google Scholar] [CrossRef]
- Almukdad, A.; Hawari, A.H.; Hafiz, M. An Enhanced Electrocoagulation Process for the Removal of Fe and Mn from Municipal Wastewater Using Dielectrophoresis (DEP). Water 2021, 13, 485. [Google Scholar] [CrossRef]
- Müller, D.; Nina Stirn, C.; Veit Maier, M. Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation. Water 2021, 13, 687. [Google Scholar] [CrossRef]
- Khan, S.U.; Farooqi, I.H.; Usman, M.; Basheer, F. Energy Efficient Rapid Removal of Arsenic in an Electrocoagulation Reactor with Hybrid Fe/Al Electrode: Process Optimization Using CCD and Kinetic Modeling. Water 2020, 12, 2876. [Google Scholar] [CrossRef]
- Song, P.; Yang, Z.; Zeng, G.; Yang, X.; Xu, H.; Wang, L.; Xu, R.; Xiong, W.; Ahmad, K. Electrocoagulation Treatment of Arsenic in Wastewaters: A Comprehensive Review. Chem. Eng. J. 2017, 317, 707–725. [Google Scholar] [CrossRef]
- Gilhotra, V.; Das, L.; Sharma, A.; Kang, T.S.; Singh, P.; Dhuria, R.S.; Bhatti, M.S. Electrocoagulation Technology for High Strength Arsenic Wastewater: Process Optimization and Mechanistic Study. J. Clean. Prod. 2018, 198, 693–703. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Singh, T.S.A. Arsenic Removal by Electrocoagulation Process: Recent Trends and Removal Mechanism. Chemosphere 2017, 181, 418–432. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Concentration |
---|---|---|
pH | - | 7.52 |
Turbidity | NTU | 2.6 |
Total dissolved solids (TDS) | mg/L | 585 |
Arsenic (As) | µg/L (ppb) | 5.3 (Actual) |
Arsenic (As) | µg/L | 100–300 (adjusted) |
Fluoride (F−) | mg/L | 0.58 |
Sulphate (SO42−) | mg/L | 61 |
Phosphate (PO43−) | mg/L | 0.5 |
Nitrate (NO3−) | mg/L | 3.2 |
Calcium (Ca2+) | mg/L | 12.67 |
Magnesium (Mg2+) | mg/L | 9.31 |
Potassium (K+) | mg/L | 6.387 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Channa, N.; Gadhi, T.A.; Mahar, R.B.; Ali, I.; Sajjad, S.; Freyria, F.S.; Bonelli, B.; Widderich, S.; Frechen, F.-B. Efficient and Rapid Combined Electrocoagulation–Filtration of Arsenic in Drinking Water. Water 2024, 16, 1684. https://doi.org/10.3390/w16121684
Channa N, Gadhi TA, Mahar RB, Ali I, Sajjad S, Freyria FS, Bonelli B, Widderich S, Frechen F-B. Efficient and Rapid Combined Electrocoagulation–Filtration of Arsenic in Drinking Water. Water. 2024; 16(12):1684. https://doi.org/10.3390/w16121684
Chicago/Turabian StyleChanna, Najeebullah, Tanveer A. Gadhi, Rasool Bux Mahar, Imran Ali, Sana Sajjad, Francesca S. Freyria, Barbara Bonelli, Sonke Widderich, and Franz-Bernd Frechen. 2024. "Efficient and Rapid Combined Electrocoagulation–Filtration of Arsenic in Drinking Water" Water 16, no. 12: 1684. https://doi.org/10.3390/w16121684
APA StyleChanna, N., Gadhi, T. A., Mahar, R. B., Ali, I., Sajjad, S., Freyria, F. S., Bonelli, B., Widderich, S., & Frechen, F. -B. (2024). Efficient and Rapid Combined Electrocoagulation–Filtration of Arsenic in Drinking Water. Water, 16(12), 1684. https://doi.org/10.3390/w16121684