Landscape Drivers of Floods Genesis (Case Study: Mayo Mizao Peri-Urban Watershed in Far North Cameroon)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Mayo Mizao Watershed
2.2. Field Data Collection Process
2.2.1. Double-Opened Ring Method: Device and Operation
2.2.2. Porchet Method
2.2.3. Field Trial Deployment Method
- -
- The combination of soil type, land use, and farming practices;
- -
- The steeper slope line of the watershed, which takes into account the different hydrogeomorphological aspects associated with the structural organization of the long profile shaped by erosion and alluvial deposits.
2.3. Data Processing and Analysis
2.3.1. The Calculation of the Saturated Hydraulic Conductivity Values
2.3.2. Data Analysis
3. Results
3.1. Lithology, Land Use Type, and Hydraulic Conductivity (Ks) of Soils in the Mayo Mizao Watershed
3.2. Impact of Soil Type on the Variability of Ks in the Mayo Mizao Watershed
3.3. Influence of Land Use Type on the Variability of Ks in the Mayo Mizao Watershed
3.4. Combined Effects of Soil Type and Land Use Type on the Variability of Ks
3.5. Impact of the Cultivation Practices on the Variability of Ks in the Mayo Mizao Catchment
3.5.1. Farming Practices Conducted on the Vertisols
3.5.2. Farming Practices Conducted on the Halomorphic Soils
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EM-DAT The International Disaster Database. CRED/UCLouvain. 2023. Available online: https://public.emdat.be (accessed on 12 August 2023).
- Assefa, M.M.; Wossenu, A. Landscape Dynamics, Soils and Hydrological Processes in Varied Climate; Springer International Publishing: Cham, Switzerland, 2016; 822p. [Google Scholar]
- Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017, 53, 5209–5219. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Fang, G.; Yan, M.; Sui, C.; Ding, Z.; Lu, C. Flood-Landscape Ecological Risk Assessment under the Background of Urbanization. Water J. 2019, 11, 1418. [Google Scholar] [CrossRef]
- Nwilo, P.C.; Olayinka, C.J.; Okolie, E.I.; Emmanuel, E.I.; Orji, M.J.; Daramola, O.E. Impacts of land cover changes on desertification in northern Nigeria and implications on the Lake Chad Basin. J. Arid Environ. 2020, 181, 104190. [Google Scholar] [CrossRef]
- Cotillon, S.E. Séries Chronologiques de L’utilisation et de L’occupation des Terres en Afrique de l’Ouest; Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2017; 4p. [Google Scholar] [CrossRef]
- Amogu, O.; Esteves, M.; Vandervaere, J.P.; Malam, A.M.; Panthou, G.; Rajot, J.-L.; Souley, Y.K.; Boubkraoui, S.; Lapetite, J.-M.; Dessay, N.; et al. Runoff evolution due to land-use change in a small Sahelian catchment. Hydrol. Sci. J. 2014, 60, 78–95. [Google Scholar] [CrossRef]
- Descroix, L.; Mahé, G.; Olivry, J.C.; Albergel, J.; Tanimoun, B.; Amadou, I.; Coulibaly, B.; Bouzou, M.I.; Faran, M.O.; Malam, A.M.; et al. Facteurs anthropiques et environnementaux de la recrudescence des inondations au Sahel. In Les Sociétés Rurales Face Aux Changements Climatiques et Environnementaux en Afrique de L’ouest; Sultan, B., Lalou, R., Amadou Sanni, M., Oumarou, A., Soumaré, M.A., Eds.; IRD: Wellington, New Zealand, 2015; pp. 153–170. [Google Scholar]
- Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin. Environ. Sustain. 2021, 50, 236–244. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Cherlet, M.; Forzieri, G.; McCormick, N.; Naumann, G.; Vogt, J.V.; Dosio, A. How will the progressive global increase of arid areas affect population and land-use in the 21st century? Glob. Planet. Chang. 2021, 205, 103597. [Google Scholar] [CrossRef]
- Chen, X.; Tian, C.; Meng, X.; Xn, Q.; Cui, G.; Zhang, Q.; Xiang, L. Analyzing the effect of urbanization on flood characteristics at catchment levels. Proc. IAHS 2015, 370, 33–38. [Google Scholar] [CrossRef]
- Guengant, J.P.; Banoin, M.; Quesnel, A. Dynamique des Populations, Disponibilités en Terres et Adaptation des Régimes Fonciers: Le Cas Du Niger; FAO et CICRED: Rome, Italy, 2003; 144p. [Google Scholar]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.B.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 0081. [Google Scholar] [CrossRef] [PubMed]
- CILSS. Les Paysages de L’afrique de L’ouest: Une Fenêtre sur un Monde en Pleine Evolution; U.S. Geological Survey EROS: Garretson, SD, USA, 2016; 236p. [Google Scholar]
- Gbohoui, Y.P.; Paturel, J.-E.; Fowe, T.; Karambiri, H.; Yacouba, H. Impacts des changements climatique et environnemental sur la réponse hydrologique du Nakambé à Wayen (Burkina Faso) à travers le cadre de budyko. Proc. IAHS 2021, 384, 269–273. [Google Scholar] [CrossRef]
- Ndongo, B.; Mbouendeu, L.S.; Hiregued, J.P. Impacts socio-sanitaires et environnementaux de la gestion des eaux pluviales en milieu urbain sahélien: Cas de Maroua, Cameroun. Afr. Sci. 2015, 11, 237–251. [Google Scholar]
- Bouba, L.; Sauvagnargues, S.; Gonné, B.; Ayral, P.-A.; Ombolo, A. Trends in rainfall and flood hazard in the Far North region of Cameroon. Geo-Eco-Trop 2017, 41, 339–358. [Google Scholar]
- Fotsing, E. Small Savannah: An Information System for the Integrated Analysis of Land Use Change in the Far North of Cameroon. Ph.D. Thesis, Universiteit Leiden, Leiden, The Netherlands, 2009; 376p. [Google Scholar]
- Wafo, T.G.; Fotsing, J.M. Quantification de l’évolution du couvert végétal dans la réserve forestière de Laf-Madjam au nord du Cameroun par télédétection satellitale. Sécheresse 2010, 21, 169–178. [Google Scholar]
- Leroux, L.; Oszwald, J.; Ngounou, N.B.; Sebag, D.; Penven, M.J.; Servat, E. Le bassin versant du Mayo-Tsanaga (Nord Cameroun): Un bassin versant expérimental pour une compréhension des relations Homme/Milieu. Rev. Française Photogram. Téléd. 2013, 202, 42–54. [Google Scholar] [CrossRef]
- Beidi, E.; Souaré, A.; Adamou, I. Evaluation of anthropization indicators of the floristic landscapes of Kaélé hills in the Sudano-Sahelian zone of Cameroon. Environ. Chall. 2021, 5, 100393. [Google Scholar] [CrossRef]
- Kodji, P.; Tchobsala, A.I. Use of plant resources by refugees from Minawao and their impact on the Sahelian savannah of Cameroon. Environ. Chall. 2021, 5, 100270. [Google Scholar] [CrossRef]
- Olivry, C. Fleuves et Rivières du Cameroun. Monog. Hydrol. ORSTOM 1986, 9, 781. [Google Scholar]
- Morin, S. «Géomorphologie». In Atlas de la Région de l’Extrême-Nord Cameroun; Seignobos, C., Iyébi-Mandejeck, O., Eds.; IRD: Paris, France, 2000; pp. 13–17. [Google Scholar]
- Chossat, J.-C. La Mesure de la Conductivité Hydraulique Dans les Sols. Choix des Méthodes; Lavoisier: Paris, France, 2005; 720p. [Google Scholar]
- Collinet, J.; Lafforgue, A. Mesures de Ruissellement et de L’érosion Sous Pluies Simulées Pour Quelques Types de Sols de Haute Volta; ORSTOM: Abidjan, Cote d’Ivoire, 1979; 129p. [Google Scholar]
- Masse, D. Amélioration du Régime Hydrique des Sols Dégradés en Vue de Leur Réhabilitation. Cas des Vertisols au Nord Cameroun; ORSTOM: Paris, France, 1993; 142p. [Google Scholar]
- Casenave, A.; Valentin, C. Les États de Surface de la Zone Sahélienne: Influence sur L’infiltration; ORSTOM: Paris, France, 1989; 231p. [Google Scholar]
- Peugeot, C. Influence de L’encroûtement Superficiel du Sol Sur le Fonctionnement Hydrologique D’un Versant Sahélien (Niger). Expérimentations In-Situ et Modélisation. Ph.D. Thesis, Joseph Fourier University, Grenoble, France, 1995; 355p. [Google Scholar]
- Boli, B.Z.; Roose, E.; Bep, A.; Ziem, B.; Kallo, S.; Waechter, F. Effets des techniques culturales sur le ruissellement, l’érosion et la production de coton et maïs sur un sol ferrugineux tropical sableux. Recherche de systèmes de culture intensifs et durables en région soudanienne du Nord-Cameroun (Mbissiri, 1991–1992). Cah. Orstom Sér. Pédol. 1993, 28, 309–325. [Google Scholar]
- Segalen, P. Carte Pédologique du Nord Cameroun au 1/1000 000. Feuille Maroua; ORSTOM: Paris, France, 1962; 71p. [Google Scholar]
- Tessier, D. Rôle de l’eau sur les propriétés physiques des sols. Sécheresse 1994, 5, 143–150. [Google Scholar]
- Shukla, M.K. Soil Hydrology, Land Use and Agriculture. Measurement and Modelling; CAB Intern.: Perai, Malaysia, 2011; 455p. [Google Scholar]
- Di, S.; Hong, Y.; Dexin, G.; Ming, Y.; Jiabing, W.; Fenghui, Y.; Changjie, J.; Anzhi, W.; Yushu, Z. The effects of land use change on soil infiltration capacity in China: A metaanalysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar]
- Andrieux, P. Effets des Pratiques Culturales sur le Ruissellement et L’érosion. Vigne, Sol et Environnement. Une Rencontre Profession-Recherche en Languedoc-Roussillon. Campus Agro-Inra Montpellier. 2006. Available online: http://sol.ensam.inra.fr/lisah/ (accessed on 12 August 2023).
- Zouré, C.; Queloz, P.; Koïta, M.; Niang, D.; Fowé, T.; Yonaba, R.; Consuegra, D.; Yacouba, H.; Karambiri, H. Modelling the water balance on farming practices at plot scale: Case study of Tougou watershed in Northern Burkina Faso. Catena 2019, 173, 50–70. [Google Scholar] [CrossRef]
- Seiny-Boukar, L.; Floret, C.; Moukouri, K.H.; Pontanier, R. Dégradation des Vertisols Dans le Nord-Cameroun: Modification du Régime Hydrique des Terres et Tentative de Réhabilitation. Utilisation Rationnelle de L’eau des Petits Bassins Versants en Zone Aride; AUPERLF-UREF John Libbey Eurotext: Paris, France, 1991; pp. 287–291. [Google Scholar]
- Lamachère, J.M. Aptitude au ruissellement et à l’infiltration d’un sol sableux fin après sarclage. Soil Water Balance in the Sudano Sahelian Zone. In Proceedings of the Niamey Workshop, Niamey, Niger, 18–23 February 1991; IAHS Publisher: Wallingford, UK, 1991. 12p. [Google Scholar]
- Fiès, J.C.; Castelao-Gegunde, A.M. Modification de l’espace poral des croutes de surface sous l’action des pluies et conséquences sur l’infiltrabilité. Agronomie 1996, 16, 367–379. [Google Scholar] [CrossRef]
- Blavet, D.; De Noni, G.; Roose, E.; Maillo, L.; Laurent, J.-Y.; Asseline, J. Effets des techniques culturales sur les risques de ruissellement et d‘érosion en nappe sous vigne en Ardèche (France). Secheresse 2004, 15, 111–120. [Google Scholar]
- Haigh, M.J. Fire effects on soils and restoration strategies. Land Reconstr. Manag. 2009, 5, 579. [Google Scholar]
- Rey, F. Restaurer les Milieux et Prévenir les Inondations Grâce au Génie Végétal; Quae: Versailles, France, 2018; 119p. [Google Scholar]
- Fournier, J.; Serpantié, G.; Delhoume, J.P.; Gathelier, R. Rôle des jachères sur les écoulements de surface et l’érosion en zone soudanienne du Burkina. Application à la gestion des terres cultivées. Sud Sci. Technol. 2000, 5, 12. [Google Scholar] [CrossRef]
- Basga, D.S.; Tsozué, D.; Temga, J.P.; Balna, J.; Nguetnkam, J.P. Land use impact on clay dispersion/flocculation in irrigated and flooded vertisols from northern Cameroon. Int. Soil Water Conserv. Res. 2018, 6, 237–244. [Google Scholar] [CrossRef]
- Shabtai, I.A.; Shenker, M.; Edeto, W.L.; Warburg, A.; Ben-Hur, M. Effects of land use on structure and hydraulic properties of Vertisols containing a sodic horizon in northern Ethiopia. Soil Tillage Res. 2014, 136, 19–27. [Google Scholar] [CrossRef]
- Collinet, J. Comportements Hydrodynamiques et Érosifs de Sols de L’afrique de L’ouest, Évolution des Matériaux et des Organisations Sous Simulation de Pluies. Ph.D. Thesis, de l’Institut de Géologie Strasbourg, Strasbourg, France, 1988; 630p. [Google Scholar]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Amani, R.; Ibrahimi, K.; Sher, F.; Milham, P.; Ghazouani, H.; Chehaibi, S.; Hussain, Z.; Iqbal, H.M.N. Impacts of different tillage practices on soil water infiltration for sustainable agriculture. Sustainability 2021, 13, 3155. [Google Scholar] [CrossRef]
- Yira, Y.; Bossa, A.Y. Agricultural Expansion-Induced Infiltration Rate Change in a West African Tropical Catchment. Appl. Environ. Soil Sci. 2019, 1, 2434512. [Google Scholar] [CrossRef]
- Chartier, M.P.; Rostagno, C.M.; Pazos, G.E. Effects of soil degradation on infiltration rates in grazed semiarid rangelands of northeastern Patagonia, Argentina. J. Arid Environ. 2011, 75, 656–661. [Google Scholar] [CrossRef]
- Anderson, L.R. Land Use and Soil Property Effects on Infiltration and Soil Aggregate Stability in the Lower Mississippi River Valley. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2019. Available online: https://scholarworks.uark.edu/etd/3144 (accessed on 12 August 2023).
- Liu, Y.; Han, J.; Jiao, J.; Liu, B.; Ge, W.; Pan, Q.; Wang, F. Responses of flood speaks to land use and landscape patterns under extreme rainstorms in small catchments. A case study of the rainstorm of Typhoon Lekima in Shandong, China. Int. Soil Water Conserv. Res. 2022, 10, 228–239. [Google Scholar] [CrossRef]
- Montoroi, J.-P. Rôle des sols sur la genèse des inondations. Problèmes actuels de la protection contre les inondations. In Proceedings of the Symposium Européen, Paris, France, 28–30 March 2012. 6p. [Google Scholar]
- Andriambelomanga, E.; Ratsivalaka, S.; Andriamampianina, N.; Randriamboavonjy, J.-C.; Mparany, A. Amélioration de la gestion paysanne de la fertilité des sols des versants cultivés des collines, du bassin versant de Maniandro (Madagascar). In Lutte Anti-Érosive. Réhabilitation des Sols Tropicaux et Protection Contre les Pluies Exceptionnelles; Roose, É., Duchaufour, H., De Noni, G., Eds.; IRD: Wellington, New Zealand, 2018; 758p. [Google Scholar]
- Duran Zuazo, V.H.; Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Wakponou, A.; Mainguet, M.; Dumay, F. Les techniques de cultures en terrasse dans les monts Mandara, Extrême Nord Cameroun. In Lutte Anti-Érosive. Réhabilitation des Sols Tropicaux et Protection Contre les Pluies Exceptionnelles; Roose, É., Duchaufour, H., De Noni, G., Eds.; IRD: Wellington, New Zealand, 2018; 758p. [Google Scholar]
- Poulard, C.; Chastan, B.P.R.; Degoutte, G.; Grelot, F.; Erlendbruch, K.; Nédélec, Y. Prévention des inondations par ralentissement dynamique: Principe et recommandation. Sci. Eaux Territ. 2008, 5–24, Consulté le 26 mai 202 à l’adresse. Available online: https://revue-set.fr/article/view/6263 (accessed on 12 August 2023).
N° | Soils Types | Number of Test Points | Identity of Test Points | |
---|---|---|---|---|
A | B | |||
0 | Bare rock (Granite) | 0 | 0 | Untested materials |
I | Lithosols on andesite (sandy-clay texture) | 4 | 3 | P24; P25; P27 |
II | Stony soils derived from loose materials (Mokoya series) | 3 | 4 | P13; P14; P15; P22 |
III | Soils derived from loose materials with a sandy-clay texture (Doyang series) | 2 | 2 | P20; P23 |
IV | Gravelly soils derived from sandy materials | 4 | Untested materials | |
V | Soils derived from loose material made of gray sand (Kodeck series) | 3 | 2 | P21; P31 |
VI | Sandy-clay soils on the pediment, tending toward dark soils | 4 | 2 | P26; P28. |
VII | Gray soils with halomorphic tendencies | 4 | 3 | P19; P29; P30. |
VIII | Vertisols («Hardé») | 4 | 6 | P1; P10; P11; P16;P17; P18 |
IX | Undifferentiated halomorphic soils | 4 | 9 | P2; P3; P4; P5; P6; P7; P8; P9; P12 |
Total | 31 | 31 | 31 |
Tref (°C) | 2 | 4 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|
Dynamic water viscosity (Centipoise) | 1.67 | 1.57 | 1.52 | 1.47 | 1.39 | 1.33 | 1.24 | 1.2 | 1.11 | 1.06 | 1 |
1.1 | 1.03 | 1 | 0.97 | 0.91 | 0.86 | 0.81 | 0.8 | 0.73 | 0.7 | 0.66 |
Ground Depth | Variable | Number of Test Points | Range | Minimum | Maximum. | Mean | Std. Deviation |
---|---|---|---|---|---|---|---|
5 cm | Ksd (mm/h) | 31 | 146 | 4 | 150 | 36 | 34 |
20 cm | Ksp (mm/h) | 31 | 416 | 0 | 416 | 38 | 92 |
Statistic Parameters | Ksd (mm/h) | Ksp (mm/h) |
---|---|---|
W | 0.780 | 0.432 |
p-value | <0.0001 | <0.0001 |
Significant level (α) | 0.05 | 0.05 |
Risk of rejecting the true hypothesis (λ) | 0.01% | 0.01% |
Statistic Parameters | Ksd (mm/h) | Ksp (mm/h) |
---|---|---|
V | 23 | 349 |
Expectation | 15,500 | 248 |
Variation (V) | 7750 | 2,603,875 |
p-value | 0.011 | 0.049 |
Significant level (α) | 0.05 | 0.05 |
Risk of rejecting the true hypothesis (λ) | 1.07% | 4.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouba, L.; Ayral, P.-A.; Sauvagnargues, S. Landscape Drivers of Floods Genesis (Case Study: Mayo Mizao Peri-Urban Watershed in Far North Cameroon). Water 2024, 16, 1672. https://doi.org/10.3390/w16121672
Bouba L, Ayral P-A, Sauvagnargues S. Landscape Drivers of Floods Genesis (Case Study: Mayo Mizao Peri-Urban Watershed in Far North Cameroon). Water. 2024; 16(12):1672. https://doi.org/10.3390/w16121672
Chicago/Turabian StyleBouba, Lucas, Pierre-Alain Ayral, and Sophie Sauvagnargues. 2024. "Landscape Drivers of Floods Genesis (Case Study: Mayo Mizao Peri-Urban Watershed in Far North Cameroon)" Water 16, no. 12: 1672. https://doi.org/10.3390/w16121672
APA StyleBouba, L., Ayral, P. -A., & Sauvagnargues, S. (2024). Landscape Drivers of Floods Genesis (Case Study: Mayo Mizao Peri-Urban Watershed in Far North Cameroon). Water, 16(12), 1672. https://doi.org/10.3390/w16121672