The Role of Automation in the Analysis of Manganese in Environmental Water Samples
Abstract
:1. Introduction
2. Automated Analytical Techniques
2.1. Flow Injection Analysis (FIA)
2.2. Reverse Flow Injection Analysis (rFIA)
2.3. Sequential Injection Analysis (SIA)
2.4. Multipumped Flow System (MPFS)
2.5. Multisyringe Flow Injection Analysis (MSFIA)
2.5.1. MSFIA-LOV
2.5.2. MSFIA-CHIP
3. Trends and Future Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patil, D.S.; Chavan, S.M.; Oubagaranadin, J.U.K. A review of technologies for manganese removal from wastewaters. J. Environ. Chem. Eng. 2016, 4, 468–487. [Google Scholar] [CrossRef]
- Grygo-Szymanko, E.; Tobiasz, A.; Walas, S. Speciation analysis and fractionation of manganese: A review. TrAC Trends Anal. Chem. 2016, 80, 112–124. [Google Scholar] [CrossRef]
- Coles, C.; Crawford, J.; McClure, P.R.; Roney, N.; Todd, G.D. Toxicological Profile for Manganese: Introduction; U.S. Department of Health and Human Services. ATSDR: Washington, DC, USA, 2012; pp. 39–40. Available online: https://stacks.cdc.gov/view/cdc/12399/cdc_12399_DS1.pdf (accessed on 10 September 2023).
- World Health Organization. Chapter 1: General Description. In Manganese in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO/SDE/WSH/03.04/104/Rev/1; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/manganese-background-document.pdf (accessed on 12 September 2023).
- Pinsino, A.; Matranga, V.; Roccheri, M.C. Manganese: A new emerging contaminant in the environment. In Environmental Contamination; IntechOpen: London, UK, 2012; pp. 17–36. [Google Scholar] [CrossRef]
- Kumar, A.P.; Reddy, P.R.; Reddy, V.K. Direct and first derivative spectrophotometric determination of manganese (II) in tap water, milk, alloy steels and plant samples. Eurasian J. Anal. Chem. India 2009, 4, 66–75. [Google Scholar]
- Lucchini, R.; Placidi, D.; Cagna, G.; Fedrighi, C.; Oppini, M.; Peli, M.; Zoni, S. Manganese and Developmental Neurotoxicity. In Neurotoxicity of Metals; Advances in Neurobiology; Aschner, M., Costa, L., Eds.; Springer: Cham, Switzerland, 2017; Volume 18. [Google Scholar] [CrossRef]
- Rustamov, N.; Abbasova, G. Determination of Manganese in Tap Water by a New Extraction-Photometric Method. Am. J. Anal. Chem. 2014, 5, 275–280. [Google Scholar] [CrossRef]
- Soto-Neira, J.; Zhu, Q.; Aller, R.C. A new spectrophotometric method to quantify dissolved manganese in marine pore waters. Mar. Chem. 2011, 127, 56–63. [Google Scholar] [CrossRef]
- Gürkan, R. Catalytic spectrophotometric determination of Mn (II) at trace levels using Celestine blue-KIO4-1, 10-phenantroline redox reaction. Bull. Chem. Soc. Ethiop. 2011, 25, 333–346. [Google Scholar] [CrossRef]
- Farina, M.; Avila, D.S.; Da Rocha JB, T.; Aschner, M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int. 2013, 62, 575–594. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.B. Manganese exposure, essentiality toxicity. Indian J. Med. Res. 2008, 128, 484–500. [Google Scholar] [PubMed]
- Noroozifar, M.; Khorasanik-Motlagh, M.O.; Akbari, R. Speciation of manganese using a pneumatic flow injection analysis-tandem spectrometer system. Turk. J. Chem. 2007, 31, 293–299. [Google Scholar]
- World Health Organization. Manganese in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; No. WHO/SDE/WSH/03.04/104; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- United States Environmental Protection Agency. Drinking Water Health Advisory for Manganese; EPA-822-R-04-003; United States Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- Ismailzadeh, A.; Masrournia, M.; Es’haghi, Z.; Bozorgmehr, M.R. An environmentally friendly sample pre-treatment method based on magnetic ionic liquids for trace determination of nitrotoluene compounds in soil and water samples by gas chromatography–mass spectrometry using response surface methodology. Chem. Pap. 2020, 74, 2929–2943. [Google Scholar] [CrossRef]
- Hossain, M.; Karmakar, D.; Begum, S.N.; Ali, S.Y.; Patra, P.K. Recent trends in the analysis of trace elements in the field of environmental research: A review. Microchem. J. 2021, 165, 1060866. [Google Scholar] [CrossRef]
- Cerdá, V.; Ferrer, L.; Avivar, J.; Cerda, A. Flow Analysis: A Practical Guide; Newnes: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Hu, B.; He, M.; Chen, B. Nanometer-sized materials for solid-phase extraction of trace elements. Anal. Bioanal. Chem. 2015, 407, 2685–2710. [Google Scholar] [CrossRef] [PubMed]
- Öztürk Er, E.; Dalgıç Bozyiğit, G.; Büyükpınar, Ç.; Bakırdere, S. Magnetic nanoparticles-based solid phase extraction methods for the determination of trace elements. Crit. Rev. Anal. Chem. 2022, 52, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Okenicová, L.; Žemberyová, M.; Procházková, S. Biosorbents for solid-phase extraction of toxic elements in waters. Environ. Chem. Lett. 2016, 14, 67–77. [Google Scholar] [CrossRef]
- Chaparro, L.; Ferrer, L.; Leal, L.O.; Cerdà, V. Automatic flow analysis method to determine traces of Mn2+ in sea and drinking waters by a kinetic catalytic process using LWCC-spectrophotometric detection. Talanta 2016, 148, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Yebra-Biurrun, M.C.; Carro-Mariño, N. Flow injection flame atomic absorption determination of Cu, Mn and Zn partitioning in seawater by on-line room temperature sonolysis and minicolumn chelating resin methodology. Talanta 2010, 83, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Yuan, D.; Huang, Y.; Lin, K.; Zhou, T. In-field determination of trace dissolved manganese in estuarine and coastal waters with automatic on-line preconcentration and flame atomic fluorescence spectrometry. Anal. Chim. Acta 2017, 963, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.K.; Nishioka, J. Quantitative analysis of Fe, Mn and Cd from sea ice and seawater in the Chukchi Sea, Arctic Ocean. Polar Sci. 2018, 17, 50–58. [Google Scholar] [CrossRef]
- Silva, J.; Pistón, M. Evaluation of sisal fiber as biosorbent for online preconcentration and determination of Cu and Mn coupled to MP AES using the analytical greenness metric approach. Braz. J. Anal. Chem. 2023, 10, 73–79. [Google Scholar] [CrossRef]
- Su, C.K.; Lin, J.Y. 3D-printed column with porous monolithic packing for online solid-phase extraction of multiple trace metals in environmental water samples. Anal. Chem. 2020, 2, 9640–9648. [Google Scholar] [CrossRef]
- Eztrujilloi, S.; Alonsoe, V.; Silescordero, M. On-Line Solid-Phase Chelation for the Determination of Six Metals in Sea Water by Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2010, 25, 1063–1071. [Google Scholar] [CrossRef]
- Guerrero, M.L.; Alonso, E.V.; Pavón, J.C.; Cordero, M.S.; De Torres, A.G. Simultaneous determination of chemical vapour generation forming elements (As, Bi, Sb, Se, Sn, Cd, Pt, Pd, Hg) and non-chemical vapour forming elements (Cu, Cr, Mn, Zn, Co) by ICP-OES. J. Anal. At. Spectrom. 2016, 31, 975–984. [Google Scholar] [CrossRef]
- Tobiasz, A.; Sołtys, M.; Kurys, E.; Domagała, K.; Dudek-Adamska, D.; Walas, S. Multicomutation flow system for manganese speciation by solid phase extraction and flame atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2017, 134, 11–16. [Google Scholar] [CrossRef]
- Cui, C.; He, M.; Hu, B. Membrane solid phase microextraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples. J. Hazard. Mater. 2011, 187, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Milne, A.; Landing, W.; Bizimis, M.; Morton, P. Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Anal. Chim. Acta 2010, 665, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Biller, D.V.; Bruland, K.W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Mar. Chem. 2012, 130, 12–20. [Google Scholar] [CrossRef]
- Lagerström, M.E.; Field, M.P.; Séguret, M.; Fischer, L.; Hann, S.; Sherrell, R.M. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: Application to the GEOTRACES program. Mar. Chem. 2013, 155, 71–80. [Google Scholar] [CrossRef]
- Silva, S.G.; Nóbrega, J.A.; Rocha, F.R. Exploiting Mn (III)/EDTA complex in a flow system with solenoid micro-pumps coupled to long pathlength spectrophotometry for fast manganese determination. Microchem. J. 2011, 98, 109–114. [Google Scholar] [CrossRef]
- Calderilla, C.; Maya, F.; Leal, L.O.; Cerdà, V. Recent advances in flow-based automated solid-phase extraction. Trends Anal. Chem. 2018, 108, 370–380. [Google Scholar] [CrossRef]
- Valsecchi, S.; Polesello, S.; Mazzoni, M.; Rusconi, M.; Petrovic, M. On-line sample extraction and purification for the LC–MS determination of emerging contaminants in environmental samples. Trends Environ. Anal. Chem. 2015, 8, 27–37. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Kołacińska, K. Recent advances in flow injection analysis. Analyst 2016, 141, 2085–2139. [Google Scholar] [CrossRef] [PubMed]
- Phansi, P.; Henríquez, C.; Palacio, E.; Wilairat, P.; Nacapricha, D.; Cerdà, V. An automated catalytic spectrophotometric method for manganese analysis using a chip-multisyringe flow injection system (Chip-MSFIA). Anal. Methods 2014, 6, 5088–5096. [Google Scholar] [CrossRef]
- Kaewwonglom, N.; Jakmunee, J. Sequential injection system with multi-parameter analysis capability for water quality measurement. Talanta 2015, 144, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Milani, A.; Statham, P.J.; Mowlem, M.C.; Connelly, D.P. Development and application of a microfluidic in-situ analyzer for dissolved Fe and Mn in natural waters. Talanta 2015, 136, 15–22. [Google Scholar] [CrossRef]
- Feng, S.; Huang, Y.; Yuan, D.; Zhu, Y.; Zhou, T. Development and application of a shipboard method for spectrophotometric determination of trace dissolved manganese in estuarine and coastal waters. Cont. Shelf Res. 2015, 92, 37–43. [Google Scholar] [CrossRef]
- Youngvises, N.; Suwannasaroj, K.; Jakmunee, J.; AlSuhaimi, A. Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn (II), Fe (II), Cu (II) and Fe (III) in natural waters. Talanta 2017, 166, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Yuan, D.; Huang, Y.; Lin, K.; Zhu, Y.; Ma, J. A catalytic spectrophotometric method for determination of nanomolar manganese in seawater using reverse flow injection analysis and a long path length liquid waveguide capillary cell. Talanta 2018, 178, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Oldham, V.E.; Luther, G.W.; Mucci, A.; Tebo, B.M. Distribution of desferrioxamine-B-extractable soluble manganese (III) and particulate MnO2 in the St. Lawrence Estuary, Canada. Mar. Chem. 2019, 208, 70–82. [Google Scholar] [CrossRef]
- Lai, Z.; Lin, F.; Qiu, L.; Wang, Y.; Chen, X.; Hu, H. Development of a sequential injection analysis device and its application for the determination of Mn (II) in water. Talanta 2020, 211, 120752. [Google Scholar] [CrossRef]
- Manousi, N.; Kabir, A.; Furton, K.G.; Zachariadis, G.A.; Anthemidis, A. Multi-element analysis based on an automated on-line microcolumn separation/preconcentration system using a novel sol-gel thiocyanatopropyl-functionalized silica sorbent prior to ICP-AES for environmental water samples. Molecules 2021, 26, 4461. [Google Scholar] [CrossRef]
- Zheng, P.; Hu, Q.; Zhang, H.; Wang, J.; Yang, Y.; He, Y.; Lai, C. Elemental Analysis of Environmental Waters by Solution Cathode Glow Discharge—Atomic Emission Spectrometry (SCGD-AES) with a Multifunctional Injection System. Anal. Lett. 2022, 55, 2273–2285. [Google Scholar] [CrossRef]
- Aguilar-Islas, A.M.; Resing, J.A.; Bruland, K.W. Catalytically enhanced spectrophotometric determination of manganese in seawater by flow-injection analysis with a commercially available resin for on-line preconcentration. Limnol. Oceanogr. Methods 2006, 4, 105–113. [Google Scholar] [CrossRef]
- Mansour, F.R.; Danielson, N.D. Reverse flow-injection analysis. TrAC—Trends Anal. Chem. 2012, 40, 1–14. [Google Scholar] [CrossRef]
- Páscoa, R.N.; Tóth, I.V.; Rangel, A.O. Review on recent applications of the liquid waveguide capillary cell in flow based analysis techniques to enhance the sensitivity of spectroscopic detection methods. Anal. Chim. Acta 2012, 739, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lenehan, C.E.; Barnett, N.W.; Lewis, S.W. Sequential injection analysis. Analyst 2002, 127, 997–1020. [Google Scholar] [CrossRef] [PubMed]
- Perez-Olmos, R.; Soto, J.C.; Zarate, N.; Araujo, A.N.; Montenegro, M.C.B.S.M. Sequential injection analysis using electrochemical detection: A review. Anal. Chim. Acta 2005, 554, 1–16. [Google Scholar] [CrossRef]
- Barnett, N.W.; Lenehan, C.E.; Lewis, S.W. Sequential injection analysis: An alternative approach to process analytical chemistry. TRAC Trends Anal. Chem. 1999, 18, 346–353. [Google Scholar] [CrossRef]
- Devaramani, S.; Banuprakash, G.; Doreswamy, B.H. Electrochemical and Optical Methods for the Quantification of Lead and Other Heavy Metal Ions in Liquid Samples. In Heavy Metals-Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021. [Google Scholar]
- Cerdà, V.; Ferrer, L.; Portugal, L.A.; de Souza, C.T.; Ferreira, S.L. Multisyringe flow injection analysis in spectroanalytical techniques—A review. TRAC Trends Anal. Chem. 2018, 98, 1–18. [Google Scholar] [CrossRef]
- Miró, M.; Cerdà, V.; Estela, J.M. Multisyringe flow injection analysis: Characterization and applications. TRAC Trends Anal. Chem. 2002, 21, 199–210. [Google Scholar] [CrossRef]
- Avivar, J.; Ferrer, L.; Casas, M.; Cerdà, V. Lab on valve-multisyringe flow injection system (LOV-MSFIA) for fully automated uranium determination in environmental samples. Talanta 2011, 84, 1221–1227. [Google Scholar] [CrossRef]
- Abouhiat, F.Z.; Henríquez, C.; Palacio, E.; El Yousfi, F.; Cerdà, V. Automatic integrated system for catalytic spectrophotometric determination of vanadium in water samples. Anal. Methods 2014, 6, 9142–9151. [Google Scholar] [CrossRef]
Analysis Mode—Automation Technique | Analytical Technique | Detection Technique and Linear Range (LR) | Precision (% RSD) | Detection and Quantification Limits (DL, QL) | Sample through Put (h−1) | Ref. |
---|---|---|---|---|---|---|
Monoelemental, MPFS—Fully automatic analysis (In-lab) | SPE: lead dioxide immobilized on polyester | UV–Vis LR: (25 to 1500) μg L−1, R2 = 0.999 | 2.6, n = 10 | DL = 6 μg L−1 | 36 | Silva et al., 2011 [35] |
Multielemental, FIA—Fully automatic analysis (In-lab) | SPE: alumina hollow fiber | ICP-OES | (n = 7) = 6.2 | DL = 0.61 µg L−1 | 5 | Cui et al., 2011 [31] |
Multielemental, FIA—Semiautomatic analysis (sample preconcentration, In-lab) | SPE: NOBIAS Chelate PA-1 resin | ICP-MS | - | DL = 0.002 nmol Kg−1 | - | Biller et al., 2012 [33] |
Multielemental, FIA—Fully automatic analysis (In-lab) | SPE: NOBIAS Chelate PA-1 resin | ICP-MS | Mn (n = 5) = 2.0 | DL = 0.002 nmol Kg−1 | 6 | Lagerström et al., 2013 [34] |
Monoelemental, MSFIA—CHIP, Fully automatic analysis (In-lab) | Mn(II) catalytic effect on the autoxidation of succinimidedioxime (SIDO) | UV–Vis LR: (1–20) µg L−1, R2 = 0.9972. | 0.67, n = 15 | DL = 0.33 µg L−1, QL = 1.10 µg L−1 | 22 | Phansi et al., 2014 [39] |
Multielemental, SIA–Fully automatic analysis (In-lab) | Colorimetric reaction | Light-emiting diode/light dependent resistor Colorimetry LR: (0.2–10) mg L−1, R2 = 0.9973 | (n = 9): 1.3 | DL = 0.14 mg L−1 | 13 | Kaewwonglom et al., 2015 [40] |
Multielemental, MSFIA—CHIP, Fully automatic analysis (In situ) | Colorimetric reaction | UV–Vis | Mn = 2.4, n = 19 | DL = 28 nM | 6 | Milani et al., 2015 [41] |
Monoelemental, rFIA—Fully automatic analysis (In situ) | Colorimetric reaction | UV–Vis LR: Ultra-pure water: (5 to 750) nmol L−1, R2 = 0.9988 Sea water matrix: (10–1500) nmol L−1, R2 = 0.9956 | Ultra-pure water matrix 0.6 for 25.0 nmol L−1 and 1.5 for 500.0 nmol L−1, n = 3 Sea water matrix: 1.2 for 25.0 nmol L−1 and 0.8 for 500.0 nmol L−1, n = 3 | Ultra-pure water: DL 1.0 nmol L−1 Sea water: DL = 3.0 nmol L−1 | 120 | Feng et al., 2015 [42] |
Monoelemental, MSFIA—LOV, Fully automatic analysis (In-lab) | SPE: Resin Dowexs 50 WX8, and Kinetic catalytic process | UV–Vis LR: (0.03–30) µg L−1, R2 = 0.9999 | Repeatability (n = 10) = 1.4 Reproducibility (n = 5) = 1.4 | DL = 0.010 µg L−1 QL = 0.33 µg L−1 | 30 | Chaparro et al., 2016 [22] |
Multielemental, FIA—Fully automatic analysis (In-lab) | SPE:. Ferromagnetic Resin | ICP-OES LR: (0.5–200) µg L−1, R2 = 0.992 | n = 11 Mn (25 µg L−1) = 2.11 Mn (100 µg L−1) = 2.09 | DL = 3.16 µg L−1 QL = 22.92 µg L−1 | 13 | Guerrero et al., 2016 [29] |
Monoelemental, FIA—Fully automatic analysis (In situ) | SPE | FAFS LR: Preconcentration time: 120 s (3.0–200.0 nmol L−1, R2 = 0.9982); 30 s (50.0–800.0 nmol L−1, R2 = 0.9992); 10 s (100.0– 2500.0 nmol L−1, R2 = 0.9995) | 50.0 nmol L−1 Repeatability = 1.5 Reproducibility = 2.9 | DL = 0.9 nmol L−1 | 10, 20 or 22 (depending on the preconcen- tration time: 120, 30 or 10 ss) | Feng et al., 2017 [24] |
800.0 nmol L−1 Repeatability = 3.0 Reproducibility = 4.7 | ||||||
1800.0 nmol L−1 Repeatability = 3.8 Reproducibility = 4.8 | ||||||
Multielemental, rFIA—Fully automatic analysis (In-lab) | Colorimetric reaction | UV–Vis LR: (0.050–3.0) mg L−1, R2 = 0.9934 | Mn(II): 0.98, n = 10 | DL = 16 µg L−1 | 15 | Youngvises et al., 2017 [43] |
Multielemental, FIA—Semiautomatic analysis (Sample preconcentration) | SPE: NOBIAS Chelate PA-1 resin | GFAAS | - | In-Lab: DL = 0.7 nM In situ: DL = 0.06 nM | - | Evans et al., 2018 [25] |
Monoelemental, rFIA–Fully automatic analysis (In situ) | Catalytic Spectrophotometric method | UV–Vis LR: (0.50–10.00) nmol L−1, R2 = 0.9998 | 1.4, n = 8 and 2.2, n = 15 | DL = 0.20 nmol L−1, QL = 0.50 nmol L−1 | 5 | Feng et al., 2018 [44] |
Monoelemental, FIA–Fully automatic analysis (In-lab) | SPE | UV–Vis | - | DL = 0.09 nM | - | Jones et al., 2019 [45] |
Multielemental, FIA—Fully automatic analysis (In-lab) | SPE | ICP-MS LR: (50–5000) ng L−1, R2 = 0.9999 | The intra- and interday variations were smaller than 3.2% and 5.6% | DL = 3.0 ng L−1 QL = 50 ng L−1 | 12 | Su et al., 2020 [27] |
Monoelemental, SIA—Fully automatic analysis (In situ) | Differential pulse cathodic stripping voltammetry | Home-made electrochemical analizer LR: (2.5–200) µg L−1, R2 = 0.9987 | Mn(II) (n = 21) = 5 | DL = 0.63 µg L−1 | 3 | Lai et al., 2020 [46] |
Multielemental, FIA—Fully automatic analysis (In-lab) | SPE | ICP-AES LR: (0.26–50) µg L−1, R2 = 0.9984 | Mn(II) (n = 8) = 2.0 | DL = 0.08 µg L−1 QL = 0.26 µg L−1 | 36 | Manousi et al., 2021 [47] |
Multielemental, FIA—Fully automatic analysis (In-lab) | - | SCGD-AES LR: (5–15) mg L−1, CF: R2 = 0.997; FIA: R2 > 0.997 | CF: 0.8% CF = Continuous Flow | CF: DL = 185.19 µg L−1 FIA: DL = 249.16 µg L−1 | - | Zheng et al., 2022 [48] |
Multielemental, FIA—Fully automatic analysis (In-lab) | SPE | MP-AES LR: (33–500) µL−1, R2 > 0.99 | (n = 6) = 3.1 | DL = 9.8 µg L−1 QL = 33 µg L−1 | 20 h−1 | Silva et al., 2023 [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Maese, R.; Rodríguez-Saldaña, V.; Ferrer, L.; Leal, L.O. The Role of Automation in the Analysis of Manganese in Environmental Water Samples. Water 2024, 16, 1659. https://doi.org/10.3390/w16121659
Rodríguez-Maese R, Rodríguez-Saldaña V, Ferrer L, Leal LO. The Role of Automation in the Analysis of Manganese in Environmental Water Samples. Water. 2024; 16(12):1659. https://doi.org/10.3390/w16121659
Chicago/Turabian StyleRodríguez-Maese, Rogelio, Verónica Rodríguez-Saldaña, Laura Ferrer, and Luz O. Leal. 2024. "The Role of Automation in the Analysis of Manganese in Environmental Water Samples" Water 16, no. 12: 1659. https://doi.org/10.3390/w16121659
APA StyleRodríguez-Maese, R., Rodríguez-Saldaña, V., Ferrer, L., & Leal, L. O. (2024). The Role of Automation in the Analysis of Manganese in Environmental Water Samples. Water, 16(12), 1659. https://doi.org/10.3390/w16121659