Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions
Abstract
:1. Introduction
2. Geological and Hydrological Setting of the Aral Sea
3. Methodology
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Micklin, P.; Aladin, N.V.; Plotnikov, I. The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake; Springer Earth System Sciences: Berlin/Heidelberg, Germany, 2014; Volume 12, p. 453. [Google Scholar]
- Bettadpur, S. Gravity Recovery and Climate Experiment Level-2 Gravity Field Product User Handbook (Rev 4.0, 25 April 2018); GRACE 327-734 (CSR-GR-03-01); Center for Space Research, The University of Texas at Austin: Austin, TX, USA, 2018; p. 21. [Google Scholar]
- Yuan, D.N.; GRACE Follow-On Level-2 Gravity Field Product User Handbook (Rev 1.1, 2 July 2019). Jet Propulsion Laboratory, JPL D-103922. 2019; p. 20. Available online: https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-docs/gracefo/open/docs/GRACE-FO_L2_UserHandbook.pdf (accessed on 25 February 2023).
- Wahr, J. Time variable gravity from satellites. In Planets and Moons. Treatise on Geophysics, Volume 10; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 213–237. [Google Scholar]
- AbouAly, N.; Abdelmohsen, K.; Becker, M.; Mohamed, A.-M.S.; Abotalib, A.Z.; Saleh, M.; Zahran, K.H. Evaluation of annual and semiannual total mass variation over the Mediterranean Sea from satellite data. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Othman, A.; Abdelmohsen, K. A Geophysical and Remote Sensing-Based Approach for Monitoring Land Subsidence in Saudi Arabia. In Applications of Space Techniques on the Natural Hazards in the MENA Region; Springer: Cham, Switzerland, 2022; pp. 477–494. [Google Scholar]
- Othman, A.; Sultan, M.; Becker, R.; Alsefry, S.; Alharbi, T.; Gebremichael, E.; Alharbi, H.; Abdelmohsen, K. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation. Surv. Geophys. 2018, 39, 543–566. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.; Sturchio, N.C.; Alsefry, S.; Emil, M.K.; Ahmed, M.; Abdelmohsen, K.; AbuAbdullah, M.M.; Yan, E.; Save, H.; Alharbi, T.; et al. Assessment of age, origin, and sustainability of fossil aquifers: A geochemical and remote sensing–based approach. J. Hydrol. 2019, 576, 325–341. [Google Scholar] [CrossRef]
- Barbosa, S.A.; Pulla, S.T.; Williams, G.P.; Jones, N.L.; Mamane, B.; Sanchez, J.L. Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa. Remote Sens. 2022, 14, 1532. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Abdellatif, B.; Emil, M.; Abotalib, A.Z.; Abdelmohsen, K.; Vazifedan, M.; Mohammad, A.T.; Hassan, S.M.; Metwalli, M.R.; et al. Identification of shallow groundwater in arid lands using multi-sensor remote sensing data and machine learning algorithms. J. Hydrol. 2022, 614, 128509. [Google Scholar] [CrossRef]
- Cui, L.; Song, Z.; Luo, Z.; Zhong, B.; Wang, X.; Zou, Z. Comparison of Terrestrial Water Storage Changes Derived from GRACE/GRACE-FO and Swarm: A Case Study in the Amazon River Basin. Water 2020, 12, 3128. [Google Scholar] [CrossRef]
- Tian, K.; Wang, Z.; Li, F.; Gao, Y.; Xiao, Y.; Liu, C. Drought Events over the Amazon River Basin (1993–2019) as Detected by the Climate-Driven Total Water Storage Change. Remote Sens. 2021, 13, 1124. [Google Scholar] [CrossRef]
- Cui, L.; Yin, M.; Huang, Z.; Yao, C.; Wang, X.; Lin, X. The Drought Events over the Amazon River Basin from 2003 to 2020 Detected by GRACE/GRACE-FO and Swarm Satellites. Remote Sens. 2022, 14, 2887. [Google Scholar] [CrossRef]
- Kiss, A.; Földváry, L. Seasonal hydrologic variations in the La Plata basin from GRACE gravity field models. Acta Geodyn. Geomater. 2017, 14, 145–152. [Google Scholar]
- Kiss, A.; Földváry, L. Multi-annual mass variations from GRACE monthly solution—Preliminary results. Acta Geodyn. Geomater. 2018, 15, 165–172. [Google Scholar] [CrossRef]
- Abdelmalik, K.W.; Abdelmohsen, K. GRACE and TRMM mission: The role of remote sensing techniques for monitoring spatio-temporal change in total water mass, Nile basin. J. Afr. Earth Sci. 2019, 160, 103596. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Ahmed, M.; Save, H.; Elkaliouby, B.; Emil, M.; Yan, E.; Abotalib, A.Z.; Krishnamurthy, R.V.; Abdelmalik, K. Response of deep aquifers to climate variability. Sci. Total Environ. 2019, 677, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, K.; Sultan, M.; Save, H.; Abotalib, A.Z.; Yan, E. What can the GRACE seasonal cycle tell us about lake-aquifer interactions? Earth Sci. Rev. 2020, 211, 103392. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelmohsen, K. Quantifying modern recharge and depletion rates of the Nubian Aquifer in Egypt. Surv. Geophys. 2018, 39, 729–751. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Vazifedan, M.; Abdelmohsen, K.; Karki, S.; Yellich, J.A.; Gebremichael, E.; Alshehri, F.; Elbayoumi, T.M. Statistical Applications to Downscale GRACE-Derived Terrestrial Water Storage Data and to Fill Temporal Gaps. Remote Sens. 2020, 12, 533. [Google Scholar] [CrossRef]
- Elsaka, B.; Abdelmohsen, K.; Alshehri, F.; Zaki, A.; El-Ashquer, M. Mass Variations in Terrestrial Water Storage over the Nile River Basin and Mega Aquifer System as Deduced from GRACE-FO Level-2 Products and Precipitation Patterns from GPCP Data. Water 2022, 14, 3920. [Google Scholar] [CrossRef]
- Földváry, L. Mass-Change Acceleration in Antarctica from GRACE Monthly Gravity Field Solutions. In Geodesy for Planet Earth, Proceedings of IAG Symposium in Buenos Aires, IAG Symposia, Volume 131; Springer: Berlin/Heidelberg, Germany, 2012; pp. 591–597. [Google Scholar]
- Földváry, L.; Kiss, A.; Su, Z.X.; Wang, G.C.; Wang, L. Accuracy investigations of GRACE-borne ice mass variations in Antarctica. Earth Sci. Front. 2015, 22, 239–246. [Google Scholar]
- Kiss, A.; Földváry, L. Uncertainty of GRACE-borne long periodic and secular ice mass variations in Antarctica. Acta Geod. Geophys. 2017, 52, 497–510. [Google Scholar] [CrossRef]
- Church, J.; White, N.J.; Konikow, L.F.; Domingues, C.M.; Cogley, J.G.; Rignot, E.; Gregory, J.; van den Broeke, M.; Monaghan, A.; Velicogna, I. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 2011, 38, L18601. [Google Scholar] [CrossRef]
- Tamisiea, M.E.; Hill, W.M.; Ponte, R.M.; Davis, J.L.; Velicogna, I. Impact of self- attraction and loading on the annual cycle in sea level. J. Geophys. Res. 2010, 115, C07004. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Yin, W.; Kang, G.; Huang, Q.; Shen, Y. Improving the Resolution of GRACE/InSAR Groundwater Storage Estimations Using a New Subsidence Feature Weighted Combination Scheme. Water 2023, 15, 1017. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, S.; Li, J. Spatiotemporal Downscaling of GRACE Total Water Storage Using Land Surface Model Outputs. Remote Sens. 2021, 13, 900. [Google Scholar] [CrossRef]
- Kumar, K.S.; Sridhar, V.; Varaprasad, B.J.S.; Chinnapa Reddy, K. Bridging the Data Gap between the GRACE Missions and Assessment of Groundwater Storage Variations for Telangana State, India. Water 2022, 14, 3852. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K.; Wang, S. A New Spatiotemporal Estimator to Downscale GRACE Gravity Models for Terrestrial and Groundwater Storage Variations Estimation. Remote Sens. 2022, 14, 5991. [Google Scholar] [CrossRef]
- Gemitzi, A.; Koutsias, N.; Lakshmi, V. A Spatial Downscaling Methodology for GRACE Total Water Storage Anomalies Using GPM IMERG Precipitation Estimates. Remote Sens. 2021, 13, 5149. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Save, H.; Abotalib, A.Z.; Yan, E.; Zahran, K.H. Buffering the impacts of extreme climate variability in the highly engineered Tigris Euphrates river system. Sci. Rep. 2022, 12, 1–13. [Google Scholar]
- Földváry, L.; Statov, V.; Mamutov, N. Applicability of GRACE and GRACE-FO for monitoring water mass changes of the Aral Sea and the Caspian Sea. In InterCarto. InterGIS. GI Support of Sustainable Development of Territories: Proceedings of the International Conference; Moscow University Press: Moscow, Russia, 2020; Volume 26, pp. 443–453. [Google Scholar]
- Cretaux, J.-F.; Letolle, R.; Bergé-Nguyen, M. History of Aral Sea level variability and current scientific debates. Glob. Planet. Change 2013, 110, 99–113. [Google Scholar] [CrossRef]
- Létolle, R.; Mainguet, M. Histoire de la mer d’Aral (Asie Centrale) depuis le dernier maximum glaciaire. Bull. Soc. Geol. Fr. 1997, 168, 387–398. [Google Scholar]
- Sorrel, P.; Popescu, S.-M.; Head, M.J.; Suc, J.-P.; Klotz, S.; Oberhänsl, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 304–327. [Google Scholar] [CrossRef]
- Boomer, I.; Wünnermann, B.; Mackay, A.W.; Austin, P.; Sorrel, P.; Reinhardt, C.; Kayser, D.; Guichard, F.; Fontugne, M. Advances in understanding the late Holocene history of the Aral Sea region. Quat. Int. 2009, 194, 79–90. [Google Scholar] [CrossRef]
- Turdimambetov, I.; Madreymov, A.; Földváry, L.; Oteuliev, M.; Kurbanov, M.; Utarbaeva, K.; Bekanov, K. Influence of Adverse Ecological Factors on the Incidence of Malignant Neoplasms. E3S Web Conf. 2021, 227, 02001. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Holstein, H. Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 2003, 68, 157–167. [Google Scholar] [CrossRef]
- Izhitskiy, A.S.; Zavialov, P.O.; Sapozhnikov, P.V.; Kirillin, G.B.; Grossart, H.P.; Kalinina, O.Y.; Zalota, A.K.; Goncharenko, I.V.; Kurbaniyazov, A.K. Present state of the Aral Sea: Diverging physical and biological characteristics of the residual basins. Sci. Rep. 2016, 6, 23906. [Google Scholar] [CrossRef] [PubMed]
- Zavialov, P.O.; Kostianoy, A.G.; Emelianov, S.V.; Ni, A.A.; Ishniyazov, D.; Khan, V.M.; Kudyshkin, T.V. Hydrographic survey in the dying Aral Sea. Geophys. Res. Lett. 2003, 30, 1659. [Google Scholar] [CrossRef]
- Millero, F.J.; Huang, F. The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K). Ocean. Sci. 2009, 5, 91–100. [Google Scholar] [CrossRef]
- Millero, F.J.; Poisson, A. International one-atmosphere equation of state of seawater. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 625–629. [Google Scholar] [CrossRef]
- Cretaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Plotnikov, I. Changes in the Species Composition of the Aral Sea Free-Living Invertebrates (Metazoa) Fauna. Proc. Zool. Inst. Russ. Acad. Sci. 2013, 3, 41–54. [Google Scholar]
- Gaybullaev, B.; Chen, S.C.; Gaybullaev, D. Changes in water volume of the Aral Sea after 1960. Appl. Water Sci. 2012, 2, 285–291. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Izhitskiy, A.S.; Soloviev, D.M. The drying dynamics of the Western Large Aral Sea from satellite data (2002–2021). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2022, 19, 246–263. (In Russian) [Google Scholar] [CrossRef]
- Andrulionis, N.Y.; Zavialov, P.O. Laboratory studies of the main component composition of hypergaline lakes. Mar. Hydrophys. J. 2019, 35, 16–36. (In Russian) [Google Scholar]
- Andrulionis, N.Y.; Zavialov, P.O.; Izhitsky, A.S. Modern evolution of salt composition of waters in the western basin of the Large Aral Sea. Okeanologiya 2021, 61, 925–935. (In Russian) [Google Scholar]
- Izhitskiy, A.S.; Zavialov, P.O.; Roget, E.; Huang, H.-P.; Kurbaniyazov, A.K. On thermohaline structure and circulation of the Western Large Aral Sea from 2009 to 2011: Observations and modeling. J. Mar. Syst. 2014, 129, 234–247. [Google Scholar] [CrossRef]
- Zavialov, P.O.; Ginzburg, A.I.; Sapozhnikov, F.V.; Abdullaev, U.R.; Ambrosimov, A.K.; Andreev, N.I.; Validjanov, R.; Ishniyazov, D.P.; Koldaev, A.A.; Kudyshkin, T.V.; et al. Complex expeditionary research in the western part of the Aral Sea in October 2003. Okeanologiya 2004, 44, 632–635. (In Russian) [Google Scholar]
- Zavialov, P.O.; Arashkevich, A.G.; Grabovsky, A.B.; Dikarev, S.N.; Jalilov, G.; Evdokimov, Y.V.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Kurbaniyazov, S.K.; Matchanov, A.T.; et al. Expeditionary research in the western and eastern basins of the Aral Sea (October 2005). Oceanology 2006, 46, 946–950. (In Russian) [Google Scholar] [CrossRef]
- Zavialov, P.O.; Andrulionis, E.E.; Arashkevich, E.G.; Grabovsky, A.B.; Dikarev, S.N.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Ni, A.A.; Sapozhnikov, F.V. Expeditionary research in the western Aral Sea basin in September 2006. Okeanologiya 2008, 48, 648–654. (In Russian) [Google Scholar]
- Zavialov, P.O.; Ni, A.A.; Ishniyamazov, D.P.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Mukhamedzhanova, D. Ongoing changes in salt composition and dissolved gases in the Aral Sea. Aquat. Geochem. 2008, 15, 263–275. [Google Scholar] [CrossRef]
- Zavialov, P.O.; Ni, A.A.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Dikarev, S.N. Five years of field hydrographic research in the Large Aral Sea (2002–2006). J. Mar. Syst. 2009, 76, 263–271. [Google Scholar] [CrossRef]
- Zavialov, P.O.; Arashkevich, E.G.; Bastida, I.; Ginzburg, A.I.; Dikaryov, S.N.; Zhitina, L.S.; Izhitsky, A.S.; Ishniyazov, D.P.; Kostyanoy, A.G.; Kravtsova, V.I.; et al. Big Aral Sea in Early XXI Cent.: Physics, Biology, Chemistry; Science: Moscow, Russia, 2012; p. 227. (In Russian) [Google Scholar]
- Bortnik, V.N.; Chistyaeva, S.P. (Eds.) Hydrometeorology and Hydrochemistry of the USSR Seas, Vol. VII: The Aral Sea; Gidrometeoizdat: Leningrad, Russia, 1990; p. 196. (In Russian) [Google Scholar]
- An, J.; Chang, H.; Han, S.H.; Khamzina, A.; Son, Y. Changes in Basic Soil Properties and Enzyme Activities Along an Afforestation Series on the Dry Aral Sea Bed, Kazakhstan. For. Sci. Technol. 2020, 16, 26–31. [Google Scholar] [CrossRef]
- Kim, J.; Song, C.; Lee, S.; Jo, H.W.; Park, E.; Yu, H.; Cha, S.; An, J.; Son, Y.; Khamzina, A.; et al. Identifying Potential Vegetation Establishment Areas on the Dried Aral Sea Floor Using Satellite Images. Land Degrad. Dev. 2020, 31, 2749–2762. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, X.; Sun, L. Monitoring and Mapping of Soil Salinity on the Exposed Seabed of the Aral Sea, Central Asia. Water 2022, 14, 1438. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Földváry, L.; Abdelmohsen, K.; Ambrus, B. Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions. Water 2023, 15, 1725. https://doi.org/10.3390/w15091725
Földváry L, Abdelmohsen K, Ambrus B. Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions. Water. 2023; 15(9):1725. https://doi.org/10.3390/w15091725
Chicago/Turabian StyleFöldváry, Lóránt, Karem Abdelmohsen, and Bence Ambrus. 2023. "Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions" Water 15, no. 9: 1725. https://doi.org/10.3390/w15091725