Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions
Abstract
1. Introduction
2. Geological and Hydrological Setting of the Aral Sea
3. Methodology
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Micklin, P.; Aladin, N.V.; Plotnikov, I. The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake; Springer Earth System Sciences: Berlin/Heidelberg, Germany, 2014; Volume 12, p. 453. [Google Scholar]
- Bettadpur, S. Gravity Recovery and Climate Experiment Level-2 Gravity Field Product User Handbook (Rev 4.0, 25 April 2018); GRACE 327-734 (CSR-GR-03-01); Center for Space Research, The University of Texas at Austin: Austin, TX, USA, 2018; p. 21. [Google Scholar]
- Yuan, D.N.; GRACE Follow-On Level-2 Gravity Field Product User Handbook (Rev 1.1, 2 July 2019). Jet Propulsion Laboratory, JPL D-103922. 2019; p. 20. Available online: https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-docs/gracefo/open/docs/GRACE-FO_L2_UserHandbook.pdf (accessed on 25 February 2023).
- Wahr, J. Time variable gravity from satellites. In Planets and Moons. Treatise on Geophysics, Volume 10; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 213–237. [Google Scholar]
- AbouAly, N.; Abdelmohsen, K.; Becker, M.; Mohamed, A.-M.S.; Abotalib, A.Z.; Saleh, M.; Zahran, K.H. Evaluation of annual and semiannual total mass variation over the Mediterranean Sea from satellite data. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Othman, A.; Abdelmohsen, K. A Geophysical and Remote Sensing-Based Approach for Monitoring Land Subsidence in Saudi Arabia. In Applications of Space Techniques on the Natural Hazards in the MENA Region; Springer: Cham, Switzerland, 2022; pp. 477–494. [Google Scholar]
- Othman, A.; Sultan, M.; Becker, R.; Alsefry, S.; Alharbi, T.; Gebremichael, E.; Alharbi, H.; Abdelmohsen, K. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation. Surv. Geophys. 2018, 39, 543–566. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sultan, M.; Sturchio, N.C.; Alsefry, S.; Emil, M.K.; Ahmed, M.; Abdelmohsen, K.; AbuAbdullah, M.M.; Yan, E.; Save, H.; Alharbi, T.; et al. Assessment of age, origin, and sustainability of fossil aquifers: A geochemical and remote sensing–based approach. J. Hydrol. 2019, 576, 325–341. [Google Scholar] [CrossRef]
- Barbosa, S.A.; Pulla, S.T.; Williams, G.P.; Jones, N.L.; Mamane, B.; Sanchez, J.L. Evaluating Groundwater Storage Change and Recharge Using GRACE Data: A Case Study of Aquifers in Niger, West Africa. Remote Sens. 2022, 14, 1532. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Abdellatif, B.; Emil, M.; Abotalib, A.Z.; Abdelmohsen, K.; Vazifedan, M.; Mohammad, A.T.; Hassan, S.M.; Metwalli, M.R.; et al. Identification of shallow groundwater in arid lands using multi-sensor remote sensing data and machine learning algorithms. J. Hydrol. 2022, 614, 128509. [Google Scholar] [CrossRef]
- Cui, L.; Song, Z.; Luo, Z.; Zhong, B.; Wang, X.; Zou, Z. Comparison of Terrestrial Water Storage Changes Derived from GRACE/GRACE-FO and Swarm: A Case Study in the Amazon River Basin. Water 2020, 12, 3128. [Google Scholar] [CrossRef]
- Tian, K.; Wang, Z.; Li, F.; Gao, Y.; Xiao, Y.; Liu, C. Drought Events over the Amazon River Basin (1993–2019) as Detected by the Climate-Driven Total Water Storage Change. Remote Sens. 2021, 13, 1124. [Google Scholar] [CrossRef]
- Cui, L.; Yin, M.; Huang, Z.; Yao, C.; Wang, X.; Lin, X. The Drought Events over the Amazon River Basin from 2003 to 2020 Detected by GRACE/GRACE-FO and Swarm Satellites. Remote Sens. 2022, 14, 2887. [Google Scholar] [CrossRef]
- Kiss, A.; Földváry, L. Seasonal hydrologic variations in the La Plata basin from GRACE gravity field models. Acta Geodyn. Geomater. 2017, 14, 145–152. [Google Scholar]
- Kiss, A.; Földváry, L. Multi-annual mass variations from GRACE monthly solution—Preliminary results. Acta Geodyn. Geomater. 2018, 15, 165–172. [Google Scholar] [CrossRef][Green Version]
- Abdelmalik, K.W.; Abdelmohsen, K. GRACE and TRMM mission: The role of remote sensing techniques for monitoring spatio-temporal change in total water mass, Nile basin. J. Afr. Earth Sci. 2019, 160, 103596. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Ahmed, M.; Save, H.; Elkaliouby, B.; Emil, M.; Yan, E.; Abotalib, A.Z.; Krishnamurthy, R.V.; Abdelmalik, K. Response of deep aquifers to climate variability. Sci. Total Environ. 2019, 677, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, K.; Sultan, M.; Save, H.; Abotalib, A.Z.; Yan, E. What can the GRACE seasonal cycle tell us about lake-aquifer interactions? Earth Sci. Rev. 2020, 211, 103392. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelmohsen, K. Quantifying modern recharge and depletion rates of the Nubian Aquifer in Egypt. Surv. Geophys. 2018, 39, 729–751. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Vazifedan, M.; Abdelmohsen, K.; Karki, S.; Yellich, J.A.; Gebremichael, E.; Alshehri, F.; Elbayoumi, T.M. Statistical Applications to Downscale GRACE-Derived Terrestrial Water Storage Data and to Fill Temporal Gaps. Remote Sens. 2020, 12, 533. [Google Scholar] [CrossRef][Green Version]
- Elsaka, B.; Abdelmohsen, K.; Alshehri, F.; Zaki, A.; El-Ashquer, M. Mass Variations in Terrestrial Water Storage over the Nile River Basin and Mega Aquifer System as Deduced from GRACE-FO Level-2 Products and Precipitation Patterns from GPCP Data. Water 2022, 14, 3920. [Google Scholar] [CrossRef]
- Földváry, L. Mass-Change Acceleration in Antarctica from GRACE Monthly Gravity Field Solutions. In Geodesy for Planet Earth, Proceedings of IAG Symposium in Buenos Aires, IAG Symposia, Volume 131; Springer: Berlin/Heidelberg, Germany, 2012; pp. 591–597. [Google Scholar]
- Földváry, L.; Kiss, A.; Su, Z.X.; Wang, G.C.; Wang, L. Accuracy investigations of GRACE-borne ice mass variations in Antarctica. Earth Sci. Front. 2015, 22, 239–246. [Google Scholar]
- Kiss, A.; Földváry, L. Uncertainty of GRACE-borne long periodic and secular ice mass variations in Antarctica. Acta Geod. Geophys. 2017, 52, 497–510. [Google Scholar] [CrossRef]
- Church, J.; White, N.J.; Konikow, L.F.; Domingues, C.M.; Cogley, J.G.; Rignot, E.; Gregory, J.; van den Broeke, M.; Monaghan, A.; Velicogna, I. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 2011, 38, L18601. [Google Scholar] [CrossRef][Green Version]
- Tamisiea, M.E.; Hill, W.M.; Ponte, R.M.; Davis, J.L.; Velicogna, I. Impact of self- attraction and loading on the annual cycle in sea level. J. Geophys. Res. 2010, 115, C07004. [Google Scholar] [CrossRef][Green Version]
- Wang, Q.; Zheng, W.; Yin, W.; Kang, G.; Huang, Q.; Shen, Y. Improving the Resolution of GRACE/InSAR Groundwater Storage Estimations Using a New Subsidence Feature Weighted Combination Scheme. Water 2023, 15, 1017. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, S.; Li, J. Spatiotemporal Downscaling of GRACE Total Water Storage Using Land Surface Model Outputs. Remote Sens. 2021, 13, 900. [Google Scholar] [CrossRef]
- Kumar, K.S.; Sridhar, V.; Varaprasad, B.J.S.; Chinnapa Reddy, K. Bridging the Data Gap between the GRACE Missions and Assessment of Groundwater Storage Variations for Telangana State, India. Water 2022, 14, 3852. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K.; Wang, S. A New Spatiotemporal Estimator to Downscale GRACE Gravity Models for Terrestrial and Groundwater Storage Variations Estimation. Remote Sens. 2022, 14, 5991. [Google Scholar] [CrossRef]
- Gemitzi, A.; Koutsias, N.; Lakshmi, V. A Spatial Downscaling Methodology for GRACE Total Water Storage Anomalies Using GPM IMERG Precipitation Estimates. Remote Sens. 2021, 13, 5149. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Save, H.; Abotalib, A.Z.; Yan, E.; Zahran, K.H. Buffering the impacts of extreme climate variability in the highly engineered Tigris Euphrates river system. Sci. Rep. 2022, 12, 1–13. [Google Scholar]
- Földváry, L.; Statov, V.; Mamutov, N. Applicability of GRACE and GRACE-FO for monitoring water mass changes of the Aral Sea and the Caspian Sea. In InterCarto. InterGIS. GI Support of Sustainable Development of Territories: Proceedings of the International Conference; Moscow University Press: Moscow, Russia, 2020; Volume 26, pp. 443–453. [Google Scholar]
- Cretaux, J.-F.; Letolle, R.; Bergé-Nguyen, M. History of Aral Sea level variability and current scientific debates. Glob. Planet. Change 2013, 110, 99–113. [Google Scholar] [CrossRef]
- Létolle, R.; Mainguet, M. Histoire de la mer d’Aral (Asie Centrale) depuis le dernier maximum glaciaire. Bull. Soc. Geol. Fr. 1997, 168, 387–398. [Google Scholar]
- Sorrel, P.; Popescu, S.-M.; Head, M.J.; Suc, J.-P.; Klotz, S.; Oberhänsl, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 304–327. [Google Scholar] [CrossRef]
- Boomer, I.; Wünnermann, B.; Mackay, A.W.; Austin, P.; Sorrel, P.; Reinhardt, C.; Kayser, D.; Guichard, F.; Fontugne, M. Advances in understanding the late Holocene history of the Aral Sea region. Quat. Int. 2009, 194, 79–90. [Google Scholar] [CrossRef]
- Turdimambetov, I.; Madreymov, A.; Földváry, L.; Oteuliev, M.; Kurbanov, M.; Utarbaeva, K.; Bekanov, K. Influence of Adverse Ecological Factors on the Incidence of Malignant Neoplasms. E3S Web Conf. 2021, 227, 02001. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Holstein, H. Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 2003, 68, 157–167. [Google Scholar] [CrossRef]
- Izhitskiy, A.S.; Zavialov, P.O.; Sapozhnikov, P.V.; Kirillin, G.B.; Grossart, H.P.; Kalinina, O.Y.; Zalota, A.K.; Goncharenko, I.V.; Kurbaniyazov, A.K. Present state of the Aral Sea: Diverging physical and biological characteristics of the residual basins. Sci. Rep. 2016, 6, 23906. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zavialov, P.O.; Kostianoy, A.G.; Emelianov, S.V.; Ni, A.A.; Ishniyazov, D.; Khan, V.M.; Kudyshkin, T.V. Hydrographic survey in the dying Aral Sea. Geophys. Res. Lett. 2003, 30, 1659. [Google Scholar] [CrossRef]
- Millero, F.J.; Huang, F. The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K). Ocean. Sci. 2009, 5, 91–100. [Google Scholar] [CrossRef][Green Version]
- Millero, F.J.; Poisson, A. International one-atmosphere equation of state of seawater. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 625–629. [Google Scholar] [CrossRef]
- Cretaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Plotnikov, I. Changes in the Species Composition of the Aral Sea Free-Living Invertebrates (Metazoa) Fauna. Proc. Zool. Inst. Russ. Acad. Sci. 2013, 3, 41–54. [Google Scholar]
- Gaybullaev, B.; Chen, S.C.; Gaybullaev, D. Changes in water volume of the Aral Sea after 1960. Appl. Water Sci. 2012, 2, 285–291. [Google Scholar] [CrossRef][Green Version]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Izhitskiy, A.S.; Soloviev, D.M. The drying dynamics of the Western Large Aral Sea from satellite data (2002–2021). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 2022, 19, 246–263. (In Russian) [Google Scholar] [CrossRef]
- Andrulionis, N.Y.; Zavialov, P.O. Laboratory studies of the main component composition of hypergaline lakes. Mar. Hydrophys. J. 2019, 35, 16–36. (In Russian) [Google Scholar]
- Andrulionis, N.Y.; Zavialov, P.O.; Izhitsky, A.S. Modern evolution of salt composition of waters in the western basin of the Large Aral Sea. Okeanologiya 2021, 61, 925–935. (In Russian) [Google Scholar]
- Izhitskiy, A.S.; Zavialov, P.O.; Roget, E.; Huang, H.-P.; Kurbaniyazov, A.K. On thermohaline structure and circulation of the Western Large Aral Sea from 2009 to 2011: Observations and modeling. J. Mar. Syst. 2014, 129, 234–247. [Google Scholar] [CrossRef][Green Version]
- Zavialov, P.O.; Ginzburg, A.I.; Sapozhnikov, F.V.; Abdullaev, U.R.; Ambrosimov, A.K.; Andreev, N.I.; Validjanov, R.; Ishniyazov, D.P.; Koldaev, A.A.; Kudyshkin, T.V.; et al. Complex expeditionary research in the western part of the Aral Sea in October 2003. Okeanologiya 2004, 44, 632–635. (In Russian) [Google Scholar]
- Zavialov, P.O.; Arashkevich, A.G.; Grabovsky, A.B.; Dikarev, S.N.; Jalilov, G.; Evdokimov, Y.V.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Kurbaniyazov, S.K.; Matchanov, A.T.; et al. Expeditionary research in the western and eastern basins of the Aral Sea (October 2005). Oceanology 2006, 46, 946–950. (In Russian) [Google Scholar] [CrossRef]
- Zavialov, P.O.; Andrulionis, E.E.; Arashkevich, E.G.; Grabovsky, A.B.; Dikarev, S.N.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Ni, A.A.; Sapozhnikov, F.V. Expeditionary research in the western Aral Sea basin in September 2006. Okeanologiya 2008, 48, 648–654. (In Russian) [Google Scholar]
- Zavialov, P.O.; Ni, A.A.; Ishniyamazov, D.P.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Mukhamedzhanova, D. Ongoing changes in salt composition and dissolved gases in the Aral Sea. Aquat. Geochem. 2008, 15, 263–275. [Google Scholar] [CrossRef]
- Zavialov, P.O.; Ni, A.A.; Kudyshkin, T.V.; Kurbaniyazov, A.K.; Dikarev, S.N. Five years of field hydrographic research in the Large Aral Sea (2002–2006). J. Mar. Syst. 2009, 76, 263–271. [Google Scholar] [CrossRef]
- Zavialov, P.O.; Arashkevich, E.G.; Bastida, I.; Ginzburg, A.I.; Dikaryov, S.N.; Zhitina, L.S.; Izhitsky, A.S.; Ishniyazov, D.P.; Kostyanoy, A.G.; Kravtsova, V.I.; et al. Big Aral Sea in Early XXI Cent.: Physics, Biology, Chemistry; Science: Moscow, Russia, 2012; p. 227. (In Russian) [Google Scholar]
- Bortnik, V.N.; Chistyaeva, S.P. (Eds.) Hydrometeorology and Hydrochemistry of the USSR Seas, Vol. VII: The Aral Sea; Gidrometeoizdat: Leningrad, Russia, 1990; p. 196. (In Russian) [Google Scholar]
- An, J.; Chang, H.; Han, S.H.; Khamzina, A.; Son, Y. Changes in Basic Soil Properties and Enzyme Activities Along an Afforestation Series on the Dry Aral Sea Bed, Kazakhstan. For. Sci. Technol. 2020, 16, 26–31. [Google Scholar] [CrossRef][Green Version]
- Kim, J.; Song, C.; Lee, S.; Jo, H.W.; Park, E.; Yu, H.; Cha, S.; An, J.; Son, Y.; Khamzina, A.; et al. Identifying Potential Vegetation Establishment Areas on the Dried Aral Sea Floor Using Satellite Images. Land Degrad. Dev. 2020, 31, 2749–2762. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, X.; Sun, L. Monitoring and Mapping of Soil Salinity on the Exposed Seabed of the Aral Sea, Central Asia. Water 2022, 14, 1438. [Google Scholar] [CrossRef]
Model Specification | Gaybullaev et al. [47] 2002–2005 (10 Data Pairs) | Ginzburg et al. [48] 2002–2020 (16 Data Pairs) |
---|---|---|
Density: 1000 kg/m3 | 0.83109 | 0.89952 |
T = 10 °C | 0.83257 | 0.93382 |
T = 20 °C | 0.83254 | 0.93381 |
T = 30 °C | 0.83253 | 0.93381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Földváry, L.; Abdelmohsen, K.; Ambrus, B. Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions. Water 2023, 15, 1725. https://doi.org/10.3390/w15091725
Földváry L, Abdelmohsen K, Ambrus B. Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions. Water. 2023; 15(9):1725. https://doi.org/10.3390/w15091725
Chicago/Turabian StyleFöldváry, Lóránt, Karem Abdelmohsen, and Bence Ambrus. 2023. "Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions" Water 15, no. 9: 1725. https://doi.org/10.3390/w15091725
APA StyleFöldváry, L., Abdelmohsen, K., & Ambrus, B. (2023). Water Density Variations of the Aral Sea from GRACE and GRACE-FO Monthly Solutions. Water, 15(9), 1725. https://doi.org/10.3390/w15091725