A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Selection of Random Forecast Model Based on DC-PC Method
2.2. Establishment of Prediction Model Based on RF
2.3. FI Identification of the EP Prediction Model
2.4. Performance Evaluation of the Proposed Model
3. Data
4. Prediction of EP
4.1. Identification of Input Factors
4.2. Forecast Results of the Proposed Model
4.3. FI of Predictors
5. Physical Mechanism of EP in MLYR
5.1. Discussion of EP Occurring in SST Anomaly Years
5.2. Comparison of Geopotential Height in SST Anomaly Years
5.3. Comparison of Water Vapor Vertical Motion in SST Anomaly Years
5.4. Comparison of ARs in SST Anomaly Years
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Yi, B.; Chen, L.; Liu, Y.; Guo, H.; Leng, Z.; Gan, X.; Xie, T.; Mei, Z. Hydrological modelling with an improved flexible hybrid runoff generation strategy. J. Hydrol. 2023, 620, 129457. [Google Scholar] [CrossRef]
- NCC. China’s 1998 Severe Flood and Climate Extremes; NCC: Shanghai, China, 1998. [Google Scholar]
- Wu, H.; Li, X.; Schumann, J.P.; Alfieri, L.; Hu, Y. From China’s Heavy Precipitation in 2020 to a “Glocal” Hydrometeorological Solution for Flood Risk Prediction. Adv. Atmos. Sci. 2021, 38, 1–7. [Google Scholar] [CrossRef]
- Zhong, Q.; Sun, Z.; Chen, H.; Li, J.; Shen, L. Multi model forecast biases of the diurnal variations of intense rainfall in the Beijing-Tianjin-Hebei region. Sci. China Earth Sci. 2022, 65, 1490–1509. [Google Scholar] [CrossRef]
- Brown, P.J.; Bradley, R.S.; Keimig, F.T. Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Clim. 2010, 23, 6555–6572. [Google Scholar] [CrossRef]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef]
- Yi, B.; Chen, L.; Zhang, H.; Singh, V.P.; Jiang, P.; Liu, Y.; Guo, H.; Qiu, H. A time-varying distributed unit hydrograph method considering soil moisture. Hydrol. Earth Syst. Sci. 2022, 26, 5269–5289. [Google Scholar] [CrossRef]
- Yu, P.-S.; Yang, T.-C.; Chen, S.-Y.; Kuo, C.-M.; Tseng, H.-W. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. J. Hydrol. 2017, 552, 92–104. [Google Scholar] [CrossRef]
- Monira, S.S.; Faisal, Z.M.; Hirose, H. Comparison of artificially intelligent methods in short term rainfall forecast. In Proceedings of the 2010 13th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 23–25 December 2010; pp. 39–44. [Google Scholar]
- Taksande, A.A.; Mohod, P. Applications of data mining in weather forecasting using frequent pattern growth algorithm. IJSR 2015, 4, 3048–3051. [Google Scholar]
- Schumacher, R.S.; Hill, A.J.; Klein, M.; Nelson, J.A.; Erickson, M.J.; Trojniak, S.M.; Herman, G.R. From Random Forests to Flood Forecasts: A Research to Operations Success Story. Bull. Am. Meteorol. Soc. 2021, 102, E1742–E1755. [Google Scholar] [CrossRef]
- Uddin, M.J.; Li, Y.; Tamim, M.Y.; Miah, M.B.; Ahmed, S.S. Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model. J. Appl. Meteorol. Climatol. 2022, 61, 651–667. [Google Scholar] [CrossRef]
- Herman, G.R.; Schumacher, R.S. Advances in Using Random Forests to Forecast Heavy Precipitation and Flash Floods. In Proceedings of the 98th American Meteorological Society Annual Meeting, Austin, TX, USA, 7–11 January 2018. [Google Scholar]
- Wei, W.; Yan, Z.; Tong, X.; Han, Z.; Ma, M.; Yu, S.; Xia, J. Seasonal prediction of summer extreme precipitation over the Yangtze River based on random forest. Weather. Clim. Extrem. 2022, 37, 100477. [Google Scholar] [CrossRef]
- Herman, G.R.; Schumacher, R.S. “Dendrology” in Numerical Weather Prediction: What Random Forests and Logistic Regression Tell Us about Forecasting Extreme Precipitation. Mon. Weather Rev. 2018, 146, 1785–1812. [Google Scholar] [CrossRef]
- Łoś, M.; Smolak, K.; Guerova, G.; Rohm, W. GNSS-Based Machine Learning Storm Nowcasting. Remote Sens. 2020, 12, 2536. [Google Scholar] [CrossRef]
- Latif, M.; Anderson, D.; Barnett, T.; Cane, M.; Kleeman, R.; Leetmaa, A.; O’Brien, J.; Rosati, A.; Schneider, E. A review of the predictability and prediction of ENSO. J. Geophys. Res. Ocean. 1998, 103, 14375–14393. [Google Scholar] [CrossRef]
- Singh, P.; Borah, B. Indian summer monsoon rainfall prediction using artificial neural network. Stoch. Environ. Res. Risk Assess. 2013, 27, 1585–1599. [Google Scholar] [CrossRef]
- Liu, G.; Ren-Guang, W.; Yuan-Zhi, Z. Persistence of snow cover anomalies over the Tibetan Plateau and the implications for forecasting summer precipitation over the meiyu-baiu region. Atmos. Ocean. Sci. Lett. 2014, 7, 119. [Google Scholar]
- Zhang, B.; Wang, P.; Zhang, H.; Wu, Y.; Wang, M. Correlation between sunspot activity and precipitation in the Ankang region in recent 63 years. Arid Zone Res. 2018, 35, 1336–1343. [Google Scholar]
- He, R.; Chen, Y.; Huang, Q.; Wang, W.; Li, G. Forecasting Summer Rainfall and Streamflow over the Yangtze River Valley Using Western Pacific Subtropical High Feature. Water 2021, 13, 2580. [Google Scholar] [CrossRef]
- Schepen, A.; Wang, Q.; Robertson, D.E. Combining the strengths of statistical and dynamical modeling approaches for forecasting Australian seasonal rainfall. J. Geophys. Res. Atmos. 2012, 117, D20. [Google Scholar] [CrossRef] [Green Version]
- Lu, E.; Chen, H.; Tu, J.; Song, J.; Zou, X.; Zhou, B.; Li, H.; Cai, W.; Chen, Y.; Chen, X. The nonlinear relationship between summer precipitation in China and the sea surface temperature in preceding seasons: A statistical demonstration. J. Geophys. Res. Atmos. 2015, 120, 12027–12036. [Google Scholar] [CrossRef]
- Sittichok, K.; Djibo, A.G.; Seidou, O.; Saley, H.M.; Karambiri, H.; Paturel, J. Statistical seasonal rainfall and streamflow forecasting for the Sirba watershed, West Africa, using sea-surface temperatures. Hydrol. Sci. J. 2016, 61, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Good, P.; Chadwick, R.; Holloway, C.E.; Kennedy, J.; Lowe, J.A.; Roehrig, R.; Rushley, S.S. High sensitivity of tropical precipitation to local sea surface temperature. Nature 2021, 589, 408–414. [Google Scholar] [CrossRef]
- Shukla, J. Predictability in the midst of chaos: A scientific basis for climate forecasting. Science 1998, 282, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-J.; Georgakakos, A.P. Hydro-climatic forecasting using sea surface temperatures: Methodology and application for the southeast US. Clim. Dyn. 2014, 42, 2955–2982. [Google Scholar] [CrossRef]
- Dittus, A.J.; Karoly, D.J.; Donat, M.G.; Lewis, S.C.; Alexander, L.V. Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes. Weather. Clim. Extrem. 2018, 21, 1–9. [Google Scholar] [CrossRef]
- Abellan, J. An application of Non-Parametric Predictive Inference on multi-class classification high-level-noise problems. Expert Syst. Appl. 2013, 40, 4585–4592. [Google Scholar] [CrossRef]
- Fernando, T.; Maier, H.; Dandy, G. Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. J. Hydrol. 2009, 367, 165–176. [Google Scholar] [CrossRef]
- Camberlin, P.; Janicot, S.; Poccard, I. Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int. J. Climatol. J. R. Meteorol. Soc. 2001, 21, 973–1005. [Google Scholar] [CrossRef]
- Colman, A.; Davey, M. Prediction of summer temperature, rainfall and pressure in Europe from preceding winter North Atlantic Ocean temperature. Int. J. Climatol. J. R. Meteorol. Soc. 1999, 19, 513–536. [Google Scholar] [CrossRef]
- Diro, G.; Grimes, D.I.F.; Black, E. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part II. Seasonal forecasting. Clim. Dyn. 2011, 37, 121–131. [Google Scholar] [CrossRef]
- Liu, L.; Ning, L.; Liu, J.; Yan, M.; Sun, W. Prediction of summer extreme precipitation over the middle and lower reaches of the Yangtze River basin. Int. J. Climatol. 2019, 39, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Nazemosadat, M.; Ghaedamini, H. On the relationships between the Madden–Julian oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis. J. Clim. 2010, 23, 887–904. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H.J.; Zhou, T. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res. 2017, 197, 379–389. [Google Scholar] [CrossRef]
- Chang, N.-B.; Yang, Y.J.; Imen, S.; Mullon, L. Multi-scale quantitative precipitation forecasting using nonlinear and nonstationary teleconnection signals and artificial neural network models. J. Hydrol. 2017, 548, 305–321. [Google Scholar] [CrossRef]
- Gauthier, T.D. Detecting trends using Spearman’s rank correlation coefficient. Environ. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Sharma, A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1—A strategy for system predictor identification. J. Hydrol. 2000, 239, 232–239. [Google Scholar] [CrossRef]
- Bowden, G.J.; Dandy, G.C.; Maier, H.R. Input determination for neural network models in water resources applications. Part 1—Background and methodology. J. Hydrol. 2005, 301, 75–92. [Google Scholar] [CrossRef]
- Chen, L.; Ye, L.; Singh, V.; Zhou, J.; Guo, S. Determination of input for artificial neural networks for flood forecasting using the copula entropy method. J. Hydrol. Eng. 2014, 19, 04014021. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Finley, A.O.; McRoberts, R.E. Efficient k-nearest neighbor searches for multi-source forest attribute mapping. Remote Sens. Environ. 2008, 112, 2203–2211. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Zhao, T.; Cheng, G.; Zhang, X.; Tang, L.; Jia, M.; Chen, Y. A scheme for rolling statistical forecasting of PM2. 5 concentrations based on distance correlation coefficient and support vector regression. Acta Sci. Circumst. 2017, 37, 1268–1276. [Google Scholar]
- Guo, Y.; Wu, C.; Guo, M.; Liu, X.; Keinan, A. Gene-based nonparametric testing of interactions using distance correlation coefficient in case-control association studies. Genes 2018, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Dalelane, C.; Winderlich, K.; Walter, A. Evaluation of Global Teleconnections in CMIP6 Climate Projections using Complex Networks. EGUsphere 2022, 14, 17–37. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ao, Y.; Li, H.; Zhu, L.; Ali, S.; Yang, Z. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Pet. Sci. Eng. 2019, 174, 776–789. [Google Scholar] [CrossRef]
- Wu, X.; He, J.; Zhang, P.; Hu, J. Power system short-term load forecasting based on improved random forest with grey relation projection. Autom. Electr. Power Syst. 2015, 39, 50–55. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Khalilia, M.; Chakraborty, S.; Popescu, M. Predicting disease risks from highly imbalanced data using random forest. BMC Med. Inform. Decis. Mak. 2011, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recognit. 2011, 44, 330–349. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D5. [Google Scholar] [CrossRef] [Green Version]
- Liu, L. Forecast of Summer Extreme Precipitation over the Middle and Lower Reaches of the Yangtze River. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2019. [Google Scholar]
- Shears, N.T.; Bowen, M.M. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci. Rep. 2017, 7, 14527. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J.F.; Datta, R.; Briggs, K. Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat. Commun. 2016, 7, 11723. [Google Scholar] [CrossRef] [Green Version]
- Gambo, K.; Li, L.; Weijing, L. Numerical simulation of Eurasian teleconnection pattern in atmospheric circulation during the Northern Hemisphere winter. Adv. Atmos. Sci. 1987, 4, 385–394. [Google Scholar] [CrossRef]
- Tao, L.; Yu, G.; Wang, X. Asymmetric effect of Pacific-Japan teleconnection pattern on summer precipitation in middle and lower reaches of Yangtze River. Trans. Atmos. Sci. 2020, 43, 299–309. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, Y. Analyses of the impacts of global SSTA on precipitation anomaly in China. J. Trop. Meteorol. 2009, 25, 561–570. [Google Scholar]
- Wu, X.; Guo, S.; Qian, S.; Wang, Z.; Lai, C.; Li, J.; Liu, P. Long-range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. Int. J. Climatol. 2022, 42, 8024–8039. [Google Scholar] [CrossRef]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Kang, L.; Ding, W. The coupling relationship between summer rainfall in China and global sea surface temperature. Clim. Environ. Res. 2006, 11, 259–269. [Google Scholar]
- Li, P.; Yu, Z.; Jiang, P.; Wu, C. Spatiotemporal characteristics of regional extreme precipitation in Yangtze River basin. J. Hydrol. 2021, 603, 126910. [Google Scholar] [CrossRef]
- Rong, Y.U.; Zhai, P. The influence of El Niño on summer persistent precipitation structure in the middle and lower reaches of the Yangtze River and its possible mechanism. Acta Meteorol. Sin. 2018, 76, 408–419. [Google Scholar]
- Yu, M. Interconnection between Kuro shio and the Precipitation over the Dongtinghu Area in Summer. Meteorol. Mon. 1999, 9, 21–23. [Google Scholar]
- Yuefeng, L.; Yihui, D. Sea surface temperature, land surface temperature and the summer rainfall anomalies over eastern china. Clim. Environ. Res. 2002, 34, 123. [Google Scholar]
- Rîmbu, N.; Boroneanţ, C.; Buţă, C.; Dima, M. Decadal variability of the Danube river flow in the lower basin and its relation with the North Atlantic Oscillation. Int. J. Climatol. J. R. Meteorol. Soc. 2002, 22, 1169–1179. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Clim. Dyn. 2016, 47, 989–1006. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Lin, J.; Shou, S.; Tang, D. Synoptic Principles and Methods; China Meteorological Press: Beijing, China, 2007. [Google Scholar]
- Hong, C.C.; Chang, T.C.; Hsu, H.H. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos. 2014, 119, 3715–3722. [Google Scholar] [CrossRef]
- Chen, D.; Chen, J.; Zuo, T. Variation of western pacific subtropical high and tis relationship with the sea surface temperature over equatorial pacific. Acta Oceanol. Sin. 2013, 35, 21–30. [Google Scholar]
- Qu, W.; Wang, G.; Wei, W. The anormaly distribution of sea temperatures in kuroshio and the floody in the middle and lower valleys of the huanghe river in july (summer). Mar. Sci. Bull. 1996, 15, 14–18. [Google Scholar]
- Lavers, D.A.; Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 2013, 40, 3259–3264. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Song, Y. East Asian summer monsoon moisture transport belt and its impact on heavy rainfalls and floods in China. Adv. Water Sci. 2020, 31, 629–643. [Google Scholar]
- Xiong, Y.; Ren, X. Contribution of Atmospheric Rivers to Precipitation and Precipitation Extremes in East Asia: Diagnosis with Moisture Flux Convergence. J. Meteorol. Res. 2021, 35, 831–843. [Google Scholar] [CrossRef]
- Ralph, F.; Coleman, T.; Neiman, P.; Zamora, R.; Dettinger, M. Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeorol. 2013, 14, 443–459. [Google Scholar] [CrossRef] [Green Version]
- Lamjiri, M.A.; Dettinger, M.D.; Ralph, F.M.; Guan, B. Hourly storm characteristics along the US West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett. 2017, 44, 7020–7028. [Google Scholar] [CrossRef]
Month | Key Input Factors of Model |
---|---|
June | NAO-Dec, SAO-Dec, SCS-Jan, NIO-Jan, AO-Mar, SAO-Apr, SIO-Apr, SIO-May |
July | EPO-Dec, EPO-Feb, EPO-Mar, NIO-Mar, NIO-Apr, NWP-Apr, NIO-May, EPO-May, NIO-Jun, EPO-Jun |
August | MSP-Dec, MEP-Dec, NAO-Dec, SEP-Dec, SAO-Jan, SEP-Jan, NEP-Jan, MSP-Feb, NEP-Feb, MEP-Feb, SAO-Feb, SEP-Feb, MSP-Mar, SEP-Mar, MSP-Apr, NWP-May, SECS-Jun, NWP-Jun |
Month | Training Period | Test Period | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | EVS | RMSE | MAE | Pr | R2 | EVS | RMSE | MAE | Pr | |
June | 0.99 | 0.99 | 1.94 | 1.33 | 100% | 0.87 | 0.91 | 7.58 | 5.96 | 90% |
July | 0.99 | 0.99 | 2.34 | 1.27 | 100% | 0.81 | 0.85 | 9.37 | 7.02 | 80% |
August | 0.97 | 0.97 | 2.77 | 1.90 | 100% | 0.83 | 0.87 | 8.35 | 6.28 | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Chen, L.; Singh, V.P.; Yi, B.; Leng, Z.; Zheng, J.; Song, Q. A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations. Water 2023, 15, 1545. https://doi.org/10.3390/w15081545
Yang B, Chen L, Singh VP, Yi B, Leng Z, Zheng J, Song Q. A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations. Water. 2023; 15(8):1545. https://doi.org/10.3390/w15081545
Chicago/Turabian StyleYang, Binlin, Lu Chen, Vijay P. Singh, Bin Yi, Zhiyuan Leng, Jie Zheng, and Qiao Song. 2023. "A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations" Water 15, no. 8: 1545. https://doi.org/10.3390/w15081545
APA StyleYang, B., Chen, L., Singh, V. P., Yi, B., Leng, Z., Zheng, J., & Song, Q. (2023). A Method for Monthly Extreme Precipitation Forecasting with Physical Explanations. Water, 15(8), 1545. https://doi.org/10.3390/w15081545