Quantifying the Impact of Model Selection When Examining Bank Retreat and Sediment Transport in Stream Restoration
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. River Terrain Model
3.1.1. Cross-Sectional Geometry
3.1.2. Bed and Bank Material Characterization
3.2. Discharge Data
3.3. Form-Based Models
3.3.1. Bank Erosion Hazard Index (BEHI)
3.3.2. Bank Assessment for Nonpoint Source Consequences of Sediment (BANCS)
3.4. Process-Based Models
3.4.1. Bank Stability and Toe Erosion Model (BSTEM)
3.4.2. Hydrologic Engineering Center—River Analysis System (HEC-RAS)
3.5. Model-to-Model Assessments
4. Results and Discussion
4.1. Applied Stress
4.1.1. Streamwise Variability
4.1.2. Correlation to NBS
4.1.3. Relationship to Flow Conveyance
4.2. Geomorphic Change
4.2.1. Bank Erosion Correlation to BEHI
4.2.2. Volumetric Amount
4.3. Comparison to Measured Post-Restoration Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing U.S. River Restoration Efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41, W10301. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The Science and Practice of River Restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Enlow, H.K.; Fox, G.A.; Boyer, T.A.; Stoecker, A.; Storm, D.E.; Starks, P.; Guertault, L. A Modeling Framework for Evaluating Streambank Stabilization Practices for Reach-Scale Sediment Reduction. Environ. Model. Softw. 2018, 100, 201–212. [Google Scholar] [CrossRef]
- Bigham, K.A. Streambank Stabilization Design, Research, and Monitoring: The Current State and Future Needs. Trans. ASABE 2020, 63, 351–387. [Google Scholar] [CrossRef]
- Russell, M.V.; Mittelstet, A.R.; Joeckel, R.M.; Korus, J.T.; Castro-Bolinaga, C.F. Impact of Bank Stabilization Structures on Upstream and Downstream Bank Mobilization at Cedar River, Nebraska. Trans. ASABE 2021, 64, 1555–1567. [Google Scholar] [CrossRef]
- Miller, J.R.; Kochel, R.C. Assessment of Channel Dynamics, In-Stream Structures and Post-Project Channel Adjustments in North Carolina and its Implications to Effective Stream Restoration. Environ. Earth Sci. 2010, 59, 1681–1692. [Google Scholar] [CrossRef]
- Castro-Bolinaga, C.F.; Fox, G.A. Streambank Erosion: Advances in Monitoring, Modeling and Management. Water 2018, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Papangelakis, E.; MacVicar, B. Process-based Assessment of Success and Failure in a Constructed Riffle-Pool River Restoration Project. River Res Applic. 2020, 36, 1222–1241. [Google Scholar] [CrossRef]
- Mal, S.; Singh, R.B.; Huggel, C.; Grover, A. Introducing Linkages between Climate Change, Extreme Events, and Disaster Risk Reduction. In Climate Change, Extreme Events and Disaster Risk Reduction, Towards Sustainable Development Goals; Mal, S., Singh, R.B., Huggel, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Fox, G.A. Process-Based Design Strengthens the Analysis of Stream and Floodplain Systems under a Changing Climate. Trans. ASABE 2019, 62, 1735–1742. [Google Scholar] [CrossRef]
- Syvitski, J.; Ángel, J.R.; Saito, Y.; Overeem, I.; Vörösmarty, C.J.; Wang, H.; Olago, D. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 2022, 3, 179–196. [Google Scholar] [CrossRef]
- Jacobson, R.B.; Berkley, J. Conceptualizing and Communicating Ecological River Restoration. In Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools; Simon, A., Bennett, S.J., Castro, J.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 194, pp. 9–27. [Google Scholar] [CrossRef]
- Rosgen, D.L. Watershed Assessment of River Stability and Sediment Supply (WARSSS); Wildland Hydrology: Fort Collins, CO, USA, 2009. [Google Scholar]
- USDA-ARS. Bank Stability and Toe Erosion Model (BSTEM); U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2023. Available online: https://www.ars.usda.gov/southeast-area/oxford-ms/national-sedimentation-laboratory/watershed-physical-processes-research/research/bstem/overview/ (accessed on 8 March 2023).
- Brunner, G.W. HEC-RAS River Analysis System User’s Manual, Version 5.0; U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- USDA. Stream Restoration Design, National Engineering Handbook 654; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2007. Available online: https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21433 (accessed on 8 March 2023).
- Harman, W.; Starr, R.; Carter, M.; Tweedy, K.; Clemmons, M.; Suggs, K.; Miller, C. A Function-Based Framework for Stream Assessment & Restoration Projects; U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds: Washington, DC, USA, 2012; EPA 843-K-12-006.
- Yochum, S.E. Guidance for Stream Restoration and Rehabilitation, Technical Note TN-102.4; U.S. Department of Agriculture, Forest Service, National Stream & Aquatic Ecology Center: Fort Collins, CO, USA, 2018.
- Smith, S.M.; Prestegaard, K.L. Hydraulic Performance of a Morphology-Based Stream Channel Design. Water Resour. Res. 2005, 41, W11413. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Doyle, M.; Kondolf, M.; Shields, F.D., Jr.; Rhoads, B.; McPhillips, M. Critical Evaluation of How the Rosgen Classification and Associated “Natural Channel Design” Methods Fail to Integrate and Quantify Fluvial Processes and Channel Response. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1117–1131. [Google Scholar] [CrossRef]
- Roper, B.B.; Buffington, J.M.; Archer, E.; Moyer, C.; Ward, M. The Role of Observer Variation in Determining Rosgen Stream Types in Northeastern Oregon Mountain Streams. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 417–427. [Google Scholar] [CrossRef]
- Ghosh, K.G.; Pal, S.; Mukhopadhyay, S. Validation of BANCS Model for Assessing Stream Bank Erosion Hazard Potential (SBEHP) in Bakreshwar River of Rarh Region, Eastern India. Model. Earth Syst. Environ. 2016, 2, 95. [Google Scholar] [CrossRef] [Green Version]
- McMillan, M.; Liebens, J.; Metcalf, C. Evaluating the BANCS Streambank Erosion Framework on the Northern Gulf of Mexico Coastal Plain. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 1393–1408. [Google Scholar] [CrossRef]
- Bigham, K.A.; Moore, T.L.; Vogel, J.R.; Keane, T.D. Repeatability, Sensitivity, and Uncertainty Analyses of the BANCS Model Developed to Predict Annual Streambank Erosion Rates. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 423–439. [Google Scholar] [CrossRef]
- Shields, F.D.; Copeland, R.R.; Klingeman, P.C.; Doyle, M.W.; Simon, A. Design for Stream Restoration. J. Hydraul. Eng. 2003, 129, 575–584. [Google Scholar] [CrossRef]
- Lammers, R.W.; Bledsoe, B.P.; Langendoen, E.J. Uncertainty and sensitivity in a bank stability model: Implications for estimating phosphorus loading. Earth Surf. Process. Landf. 2017, 42, 612–623. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Pollen-Bankhead, N.; Thomas, R.E. Development and Application of a Deterministic Bank Stability and Toe Erosion Model for Stream Restoration. In Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools; Simon, A., Bennett, S.J., Castro, J.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 194, pp. 453–474. [Google Scholar] [CrossRef]
- Papanicolaou, A.N.; Elhakeem, M.; Hilldale, R. Secondary Current Effects on Cohesive River Bank Erosion. Water Resour. Res. 2007, 43, W12418. [Google Scholar] [CrossRef]
- Tullos, D.; Baker, D.W.; Crowe Curran, J.; Schwar, M.; Schwartz, J. Enhancing resilience of river restoration design in systems undergoing change. J. Hydraul. Eng. 2021, 147, 03121001. [Google Scholar] [CrossRef]
- USGS. StreamStats: Streamflow Statistics and Spatial Analysis Tools for Water-Resources Applications; U.S. Geological Survey: Reston, VA, USA, 2023. Available online: https://streamstats.usgs.gov/ss/ (accessed on 8 March 2023).
- NCDEQ-DMS. Paschal Golf Course (Richland Creek) Stream Restoration Monitoring Report, Monitoring Year 05; KCI Associates of North Carolina: Raleigh, NC, USA, 2016. [Google Scholar]
- NCDEQ-DMS. DMS Project Documents Table; Division of Mitigation Services, North Carolina Department of Environmental Quality: Raleigh, NC, USA, 2023. Available online: https://deq.nc.gov/about/divisions/mitigation-services/dms-project-documents-table (accessed on 8 March 2023).
- Kassa, K.H. A Multi-Scale Modeling Approach to Examine Bank Erosion and Sediment Transport in Stream Restoration: A Case Study in the North Carolina Piedmont Region. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2019. Available online: http://www.lib.ncsu.edu/resolver/1840.20/36717 (accessed on 8 March 2023).
- Hanson, G.J. Surface erodibility of earthen channel at high stresses: Part II. Developing an in-situ testing device. Trans. ASAE 1990, 33, 132–137. [Google Scholar] [CrossRef]
- Hanson, G.J. Development of a jet index to characterize erosion resistance of soils in earthen spillways. Trans. ASAE 1991, 34, 2015–2020. [Google Scholar] [CrossRef]
- Fox, G.A.; Guertault, L.; Castro-Bolinaga, C.F.; Allen, P.; Bigham, K.A.; Bonelli, S.; Hunt, S.L.; Kassa, K.; Langendoen, E.J.; Porter, E.; et al. Perspectives on the Jet Erosion Test (JET): Lessons Learned, Challenges and Opportunities in Quantifying Cohesive Soil Erodibility. J. ASABE 2022, 65, 197–207. [Google Scholar] [CrossRef]
- Al-Madhhachi, A.-T.; Hanson, G.J.; Fox, G.A.; Tyagi, A.K.; Bulut, R. Measuring soil erodibility using a laboratory “mini” JET. Trans. ASABE 2013, 56, 901–910. [Google Scholar] [CrossRef]
- Hanson, G.J.; Cook, K.R. Development of Excess Shear Stress Parameters for Circular Jet Testing. In ASAE Paper No. 972227, Proceedings of the ASAE Meeting, Minneapolis, MN, USA, 10–14 August 1997; ASAE: St. Joseph, MI, USA, 1997. [Google Scholar]
- Hanson, G.J.; Cook, K.R. Apparatus, Test Procedures, and Analytical Methods to Measure Soul Erodibility in Situ. Appl. Eng. Agric. 2004, 20, 455–462. [Google Scholar] [CrossRef]
- Daly, E.R.; Fox, G.A.; Miller, R.B.; Al-Madhhachi, A.S.T. A scour depth approach for deriving erodibility parameters from jet erosion tests. Trans. ASABE 2013, 56, 1343–1351. [Google Scholar] [CrossRef]
- Simon, A.; Thomas, R.E.; Klimetz, L. Comparison and Experiences with Field Techniques to Measure Critical Shear Stress and Erodibility of Cohesive Deposits. In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June–1 July 2010. [Google Scholar]
- ASCE. Sedimentation Engineering Manual: Processes, Measurements, Modeling, and Practice, ASCE Manuals and Reports on Engineering Practice No. 110; Garcia, M.H., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2008. [Google Scholar]
- Hanson, G.J.; Simon, A. Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol. Process. 2001, 15, 23–38. [Google Scholar] [CrossRef]
- Doll, B.A.; Wise-Frederick, D.E.; Buckner, C.M.; Wilkerson, S.D.; Harman, W.A.; Smith, R.E.; Spooner, J. Hydraulic Geometry Relationships for Urban Streams Throughout the Piedmont of North Carolina. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 641–651. [Google Scholar] [CrossRef]
- Sholtes, J.S.; Bledsoe, B.P. Half-yield discharge: Process-based predictor of bankfull discharge. J. Hydraul. Eng. 2016, 142, 04016017. [Google Scholar] [CrossRef] [Green Version]
- Brownlie, W.R. Flow depth in sand-bed channels. J. Hydraul. Eng. 1983, 109, 959–990. [Google Scholar] [CrossRef]
- Castro-Bolinaga, C.F.; Diplas, P. Hydraulic Modeling of Extreme Hydrologic Events: Case study in Southern Virginia. J. Hydraul. Eng. 2014, 140, 05014007. [Google Scholar] [CrossRef]
- Chang, H.H. Fluvial Processes in River Engineering, 1st ed.; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Rosgen, D.L.; Keane, T.D.; Geenen, D. Discussion “Evaluating the BANCS Streambank Erosion Framework on the Northern Gulf of Mexico Coastal Plain” by Mitchell McMillan, Johan Liebens, and Chris Metcalf. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 274–280. [Google Scholar] [CrossRef]
- Kwan, H.; Swanson, S. Prediction of annual streambank erosion for Sequoia National Forest, California. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1439–1447. [Google Scholar] [CrossRef]
- Allmanová, Z.; Vlčková, M.; Jankovský, M.; Allman, M.; Merganič, J. How can stream bank erosion be predicted on small water courses? Verification of BANCS model on the Kubrica watershed. Int. J. Sediment Res. 2021, 36, 419–429. [Google Scholar] [CrossRef]
- Doll, B.A.; Grabow, G.L.; Hall, K.R.; Halley, J.; Harman, W.A.; Jennings, G.D.; Wise, D.E. Stream Restoration: A Natural Channel Design Handbook; North Carolina Stream Restoration Institute and North Carolina Sea Grant: Raleigh, NC, USA, 2003; Available online: https://www.bae.ncsu.edu/extension/srp/technical-resources/ (accessed on 8 March 2023).
- Midgley, T.L.; Fox, G.A.; Heeren, D.M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012, 145, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Curini, A.; Darby, S.E.; Langendoen, E.J. Bank and Near-Bank Processes in an Incised Channel. Geomorphology 2000, 35, 193–217. [Google Scholar] [CrossRef]
- Klavon, K.; Fox, G.; Guertault, L.; Langendoen, E.; Enlow, H.; Miller, R.; Khanal, A. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Process. Landf. 2017, 42, 191–213. [Google Scholar] [CrossRef]
- CEIWR-HEC. HEC-RAS USDA-ARS Bank Stability & Toe Erosion Model (BSTEM), Technical Reference & User’s Manual; U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center (HEC): Davis, CA, USA, 2015. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics, 1st ed.; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Yang, C.T. Incipient Motion and Sediment Transport. Journal of the Hydraulics Division. J. Hydraul. Div. 1973, 99, 1679–1704. [Google Scholar] [CrossRef]
- Yang, C.T. Unit stream power equation for gravel. J. Hydraul. Eng. 1984, 110, 1783–1797. [Google Scholar] [CrossRef]
- Thomas, W.A. Mathematical modeling of sediment movement. In Gravel Bed Rivers; Hey, R.D., Bathurst, J.C., Thorne, C.R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1982; pp. 487–508. [Google Scholar]
- Maity, R. Statistical Methods in Hydrology and Hydroclimatology; Springer Nature: Singapore, 2018. [Google Scholar]
- Davidson, S.L.; Eaton, B.C. Beyond regime: A stochastic model of floods, bank erosion, and channel migration. Water Resour. Res. 2018, 54, 6282–6298. [Google Scholar] [CrossRef]
- Dick, B.M.; Hey, R.; Peralta, P.; Jewell, I.; Simon, P.; Peszlen, I. Estimating Annual Riverbank Erosion Rates—A Dendrogeomorphic Method. River Res. Applic. 2014, 30, 845–856. [Google Scholar] [CrossRef]
- Jennings, G.D.; Harman, W.A. Measurement and Stabilization of Streambank Erosion in North Carolina. In Soil Erosion Research, Proceedings of the 21st Century, Proceedings of the International Symposium, Honolulu, HI, USA, 3–5 January 2001; Ascough, J.C., Flanagan, D.C., Eds.; ASAE: St. Joseph, MI, USA, 2001; pp. 537–540. [Google Scholar] [CrossRef]
- Dave, N.; Mittelstet, A.; Korus, J.; Waszgis, M. Impact of an Extreme Flood Event on Streambank Retreat: Cedar River, Nebraska, USA. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 528–541. [Google Scholar] [CrossRef]
- NASEM. A Vision for NSF Earth Sciences 2020-2030: Earth in Time; National Academies of Sciences, Engineering, and Medicine (NASEM); The National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- USACE. HEC-RAS 2D User’s Manual, Version 6.3. U.S. Army Corps of Engineers, Hydrologic Engineering, Center, 2023. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest (accessed on 31 March 2023).
- Lai, Y.G. Modeling stream bank erosion: Practical stream results and future needs. Water 2017, 9, 950. [Google Scholar] [CrossRef] [Green Version]
- Khosronejad, A.; Limaye, A.B.; Zhang, Z.; Kang, S.; Yang, X.; Sotiropoulos, F. On the Morphodynamics of a Wide Class of Large-Scale Meandering Rivers: Insights Gained by Coupling LES with Sediment-Dynamics. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003257. [Google Scholar] [CrossRef]
- Liu, D.; Valyrakis, M.; Williams, R. Flow hydrodynamics across open channel flows with riparian zones: Implications for riverbank stability. Water 2017, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- NCCO. About North Carolina’s Climate. North Carolina Climate Office. 2023. Available online: https://climate.ncsu.edu/learn/about-our-climate/ (accessed on 31 March 2023).
- Mahalder, B.; Schwartz, J.S.; Palomino, A.M.; Zirkle, J. Relationships between physical-geochemical soil properties and erodibility of streambanks among different physiographic provinces of Tennessee, USA. Earth Surf. Process. Landf. 2018, 43, 401–416. [Google Scholar] [CrossRef]
- Hoomehr, S.; Akinola, A.I.; Wynn-Thompson, T.; Garnand, W.; Eick, M.J. Water temperature, pH, and road salt impacts on the fluvial erosion of cohesive streambanks. Water 2018, 10, 302. [Google Scholar] [CrossRef] [Green Version]
XS | d50 (mm) | Classification 1 |
---|---|---|
1 | 2.15 | Very fine gravel |
2 | 1.60 | Very coarse sand |
3 | 1.60 | Very coarse sand |
4 | 2.40 | Very fine gravel |
5 | 2.15 | Very fine gravel |
6 | 1.60 | Very coarse sand |
7 | 2.00 | Very coarse sand to very fine gravel |
8 | 2.40 | Very fine gravel |
XS | Side | d50 (mm) | Classification 1 | τc (Pa) 2 | kd (cm3/N·s) 2 |
---|---|---|---|---|---|
1 | LB | 0.320 | Medium sand | 0.14 | 5.82 |
2 | RB | 0.350 | Medium sand | 2.18 | 8.89 |
3 | LB | 0.300 | Medium sand | 3.29 | 5.68 |
4 | RB | 0.125 | Very fine to fine sand | 0.14 | 4.72 |
5 | LB | 0.125 | Very fine to fine sand | 0.15 | 4.65 |
6 | RB | 0.062 | Coarse silt to very fine sand | 7.36 | 2.60 |
7 | RB | 0.100 | Very fine sand | 0.01 | 8.60 |
8 | LB | 0.500 | Medium to coarse sand | 0.81 | 4.69 |
XS | Side | PR | PH | ||
---|---|---|---|---|---|
Score | Rating | Score | Rating | ||
1 | LB | 15.1 | Low | 12.9 | Low |
2 | RB | 17.7 | Low | 18.1 | Low |
3 | LB | 13.6 | Low | 19.9 | Moderate |
4 | RB | 40.0 | Very High | 32.1 | High |
5 | LB | 27.4 | Moderate | 33.4 | High |
6 | RB | 15.3 | Low | 10.0 | Low |
7 | RB | 20.0 | Moderate | 26.8 | Moderate |
8 | LB | 30.6 | High | 33.0 | High |
XS | Side | PR | PH | ||
---|---|---|---|---|---|
Ratio 1 | Rating | Ratio 1 | Rating | ||
1 | LB | 1.4 | Low | 1.3 | Low |
2 | RB | 1.2 | Low | 1.3 | Low |
3 | LB | 1.2 | Low | 1.5 | Low |
4 | RB | 1.9 | High | 1.7 | Moderate |
5 | LB | 2.3 | High | 1.9 | High |
6 | RB | 1.7 | Moderate | 1.7 | Moderate |
7 | RB | 2.0 | High | 1.9 | High |
8 | LB | 2.1 | High | 1.9 | High |
Geometry | τo-reach (Pa) | ||
---|---|---|---|
BSTEM | HEC-RAS 1D | HEC-RAS 1D & BSTEM | |
DES | 16.7 | 3.3 | 3.3 |
PR | 14.8 | 5.8 | 5.8 |
PH | 15.2 | 5.0 | 4.6 |
XS | DES | PR | PH | |||
---|---|---|---|---|---|---|
τo-xs (Pa) | Qxs (m3/s) | τo-xs (Pa) | Qxs (m3/s) | τo-xs (Pa) | Qxs (m3/s) | |
4 | 14.0 | 12.5 | 13.1 | 12.0 | 16.7 | 6.8 |
7 | 18.6 | 10.8 | 17.3 | 11.7 | 19.1 | 12.2 |
8 | 13.9 | 14.3 | 19.6 | 23.8 | 18.3 | 18.7 |
Geometry | Volumetric Amounts (m3) | |||
---|---|---|---|---|
BANCS 1 | BSTEM 2 | HEC-RAS 1D 2 | HEC-RAS 1D & BSTEM 2 | |
Bank Erosion | Bank Erosion and Failure | Bed Material Transport | Bed Material Transport; Bank Erosion and Failure | |
DES | n/a | −2.6 | −463.3 | −759.9 |
PR | −2.4 | −18.6 | +1374.2 | +2043.6 |
PH | −2.7 | −26.7 | +1138.2 | +1726.7 |
Year | Reach-Averaged Bankfull Variables | |||
---|---|---|---|---|
Area (m2) | Width (m) | Depth (m) | Sf (m/m) | |
2010 | 8.23 | 9.83 | 1.21 | 0.0027 |
2011 | 8.00 | 10.14 | 0.79 | 0.0031 |
2012 | 7.52 | 8.92 | 1.34 | 0.0031 |
2013 | 6.83 | 9.91 | 0.71 | 0.0030 |
2014 | 6.46 | 9.66 | 0.69 | 0.0030 |
2016 | 6.09 | 9.09 | 1.16 | 0.0027 |
Year | τo-reach (Pa) | Volumetric Amounts (m3) |
---|---|---|
2010 | 17.8 | - |
2011 | 20.5 | +1235.3 |
2012 | 19.5 | +2609.1 |
2013 | 17.9 | +3786.5 |
2014 | 17.4 | +1992.8 |
2016 | 13.9 | +1985.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassa, K.; Castro-Bolinaga, C.; Guertault, L.; Fox, G.A.; Russell, P.; Brown, E.D. Quantifying the Impact of Model Selection When Examining Bank Retreat and Sediment Transport in Stream Restoration. Water 2023, 15, 1448. https://doi.org/10.3390/w15081448
Kassa K, Castro-Bolinaga C, Guertault L, Fox GA, Russell P, Brown ED. Quantifying the Impact of Model Selection When Examining Bank Retreat and Sediment Transport in Stream Restoration. Water. 2023; 15(8):1448. https://doi.org/10.3390/w15081448
Chicago/Turabian StyleKassa, Kayla, Celso Castro-Bolinaga, Lucie Guertault, Garey A. Fox, Periann Russell, and Emily D. Brown. 2023. "Quantifying the Impact of Model Selection When Examining Bank Retreat and Sediment Transport in Stream Restoration" Water 15, no. 8: 1448. https://doi.org/10.3390/w15081448
APA StyleKassa, K., Castro-Bolinaga, C., Guertault, L., Fox, G. A., Russell, P., & Brown, E. D. (2023). Quantifying the Impact of Model Selection When Examining Bank Retreat and Sediment Transport in Stream Restoration. Water, 15(8), 1448. https://doi.org/10.3390/w15081448