Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection and Sample Analysis
3.2. Statistical Analysis
4. Results and Discussion
4.1. Hydrochemical Characteristics
4.2. Trace Elements Concentration of the Water Samples
4.3. Variation of Downstream Concentration
4.4. Statistical Analysis of the Water Samples Dataset
4.5. Geochemistry of Stream Sediments
4.6. Statistical Analysis of the Stream Sediments Samples Dataset
4.7. Correlations with Coal Mine Drainage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, P.P. Research on Geologic Environment Effects Induced by Coal Mining in Ecological Weakness Area and Assessment Techniques: A Case Study Taking Yushenfu Mining District in Northern Shanxi Province; China University of Mining and Technology: Xuzhou, China, 2011. [Google Scholar]
- Alexakis, D.; Gamvroula, D. Arsenic, Chromium, and Other Potentially Toxic Elements in the Rocks and Sediments of Oropos-Kalamos Basin, Attica, Greece. Appl. Environ. Soil Sci. 2014, 2014, 718534. [Google Scholar] [CrossRef] [Green Version]
- Yoriya, S.; Tepsri, P. Investigation of Metal and Trace Elements of Cenospheres from Lignite High-Calcium Fly Ash (Thailand). Water 2021, 13, 2935. [Google Scholar] [CrossRef]
- Koukouzas, N.; Ketikidis, C.; Itskos, G. Heavy Metal Characterization of CFB-Derived Coal Fly Ash. Fuel Process. Technol. 2011, 92, 441–446. [Google Scholar] [CrossRef]
- Heng, Y.; Yong, W.; Lili, J.; Meng, C.; Nisong, P.; Yong, L.; Li, L. Hydrogeochemical vertical zonation and evolution model of the Kongjiagou coalmine in Sichuan, China. Water Supply 2022, 22, 6111–6129. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Zhou, J.W.; Lin, S.H.; Wei, D.; Zhang, L.; Yuan, L. Characteristics and causes of groundwater pollution after Hongshan-Zhaili mine closure in Zibo. Saf. Environ. Eng. 2015, 22, 23–28. [Google Scholar]
- Jackson, L.M.; Parbhakar-Fox, A. Mineralogical and geochemical characterization of the Old Tailings Dam, Australia: Evaluating the effectiveness of a water cover for long-term AMD control. Appl. Geochem. 2016, 68, 64–78. [Google Scholar] [CrossRef]
- Sahoo, S.; Khaoash, S. Impact assessment of coal mining on groundwater chemistry and its quality from Brajrajnagar coal mining area using indexing models. J. Geochem. Explor. 2020, 215, 106559. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, W.; Zhang, Z. Analysis on rule of groundwater movement and model establishment of current numerical simulation in abandoned mines. J. China Coal Soc. 2006, 31, 74–77. [Google Scholar]
- Wu, Q.; Li, S. Positive and negative environmental effects of closed mines and its countermeasures. J. China Coal Soc. 2018, 43, 21–32. [Google Scholar]
- Doulati Ardejani, F.; Jodeiri Shokri, B.; Bagheri, M.; Soleimani, E. Investigation of pyrite oxidation and acid mine drainage characterization associated with Razi active coal mine and coal washing waste dumps in the Azad shahr–Ramian region, northeast Iran. Environ. Earth Sci. 2010, 61, 1547–1560. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Jiang, L. The Sedimentary Environment and Coal Accumulating Pattern of Jingang Coalfield in Dazhou. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2016. [Google Scholar]
- Li, Y. Sequence-Palaeogeography and Coal Accumulation of the Late Triassic Xujiahe Formation in the Sichuan Basin. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2014. [Google Scholar]
- Jiang, Q. Impact and assessment of Zhenfoshan coal mining of Dazhou on water environment. Acta Miner. Sin. 2009, 29 (Suppl. S1), 398–399. [Google Scholar]
- Hu, W.; Zhou, J.; Yan, L. Study on environment and safety disasters from abandoned coal mines. J. Xi’an Univ. Sci. Technol. 2010, 30, 436–440. [Google Scholar]
- Li, M.; Wu, H. Coal seam physical property and coal quality characteristics of Jingang coal mine in Dazhou city, Sichuan province. Mod. Min. 2018, 34, 41–45. [Google Scholar]
- Hou, D.Y.; O’Connor, D.; Nathanail, P.; Li, T.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231 Pt 1, 1188–1200. [Google Scholar] [CrossRef]
- Qin, W.J.; Han, D.M.; Song, X.F.; Engesgaard, P. Effects of an abandoned Pb-Zn mine on a karstic groundwater reservoir. J. Geochem. Explor. 2019, 200, 221–233. [Google Scholar] [CrossRef]
- Narváez, J.; Richter, P.; Toral, M. Preliminary physical chemical characterization of river waters and sediments affected by copper mining activity in Central Chile: Application of multivariate analysis. J. Chil. Chem. Soc. 2007, 52, 1261–1265. [Google Scholar] [CrossRef] [Green Version]
- Mostert, M.M.; Ayoko, G.A.; Kokot, S. Application of chemometrics to analysis of soil pollutants. TrAC Trends Anal. Chem. 2010, 29, 430–445. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Tang, C.; Chen, J.; Yao, H. Assessment of major ions and heavy metals in groundwater: A case study from Guangzhou and Zhuhai of the Pearl River Delta, China. Front. Earth Sci. 2016, 10, 340–351. [Google Scholar] [CrossRef]
- El Amari, K.; Valera, P.; Hibti, M.; Pretti, S.; Marcello, A.; Essarraj, S. Impact of mine tailings on surrounding soils and ground water: Case of Kettara old mine, Morocco. J. Afr. Earth Sci. 2014, 100, 437–449. [Google Scholar] [CrossRef]
- Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1986; pp. 166–171. [Google Scholar]
- Piper, A.M. A graphical procedure in the chemical interpretation of groundwater analysis. Trans. Am. Geophys. Union. 1944, 25, 914–923. [Google Scholar] [CrossRef]
- Luan, F.; Zhou, J.; Jia, R.; Lu, C.; Bai, M.; Liang, H. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-YiwuBasin, Xinjiang. Environ. Chem. 2017, 36, 380–389. (In Chinese) [Google Scholar]
- Li, T. Study on Groundwater Pollution Risk Assessment of Abandoned Coal Mine. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2014. [Google Scholar]
- Lghoul, M.; Maqsoud, A.; Hakkou, R.; Kchikach, A. Hydrogeochemical behavior around the abandoned Kettara mine site, Morocco. J. Geochem. Explor. 2014, 144, 456–467. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, Y.; Ning, S.; Zhao, Y. Mineralogical Characteristics in the No. 6 Coal Seam from the Xiaohuangshan coal mine of Fukang Mining Area, Junggar Coal field. Coal Sci. Technol. 2020, 49, 9. [Google Scholar]
- Zhang, B.H. Study on Ecological Environmental Effect of Coal Mine Closure: A Case Study of Zaozhuang Coal Mining Area. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2016. [Google Scholar]
- Deng, D.; Wu, Y.; Sun, Y.; Ren, B.; Song, L. Pollution Characteristics and Spatial Distribution of Heavy Metals in Coal-Bearing Sandstone Soil: A Case Study of Coal Mine Area in Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 6493. [Google Scholar] [CrossRef]
- Cravotta, C.A., III. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001; Scientific Investigations Report 2004-5291; U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Cravotta, C.A., III. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations. Appl. Geochem. 2008, 23, 203–226. [Google Scholar] [CrossRef]
- Peng, Z.J. Treatment of Excessive Iron and Manganese in Groundwater. Guangdong Chem. Ind. 2019, 46, 130–131. [Google Scholar]
- Gamvroula, D.; Alexakis, D.; Stamatis, G. Diagnosis of groundwater quality and assessment of contamination sources in the Megara basin (Attica, Greece). Arab. J. Geosci. 2013, 6, 2367–2381. [Google Scholar] [CrossRef]
- Pope, J.; Newman, N.; Craw, D.; Trumm, D.; Rait, R. Factors that influence coal mine drainage chemistry West Coast, South Island, New Zealand. N. Z. J. Geol. Geophys. 2010, 53, 115–128. [Google Scholar] [CrossRef]
- Chen, M.; Wu, Y.; Gao, D.; Chang, M. Identification of coal mine water-bursting source using multivariate statistical analysis and tracing test. Arab. J. Geosci. 2017, 10, 28. [Google Scholar] [CrossRef]
- Tarutis, W.J., Jr.; Unz, R.F.; Brooks, R.P. Behavior of sedimentary Fe and Mn in a natural wetland receiving acidic mine drainage, Pennsylvania, U.S.A. Appl. Geochem. 1992, 7, 77–85. [Google Scholar] [CrossRef]
- Shi, C.Y.; Liang, M.; Feng, B. Average background values of 39 chemical elements in stream sediments of China. Earth Sci. 2016, 41, 234–251. [Google Scholar]
- Zhao, Y.; Kumul, C.; Wang, T.; Mosusu, N.; Yao, Z.; Zhu, Y.; Zhang, B.; Wang, X. National-Scale Geochemical Baseline and Anomalies of Chromium in Papua New Guinea. Minerals 2023, 13, 205. [Google Scholar] [CrossRef]
- Doufexi, M.; Gamvroula, D.E.; Alexakis, D.E. Elements’ Content in Stream Sediment and Wildfire Ash of Suburban Areas in West Attica (Greece). Water 2022, 14, 310. [Google Scholar] [CrossRef]
- Neiva, A.M.R.; Carvalho, P.C.S.; Antunes, I.M.H.R.; Silva, M.M.V.G.; Santos, A.C.T.; Cabral Pinto, M.M.S.; Cunha, P.P. Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, Central Portugal. J. Geochem. Explor. 2014, 136, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Neiva, A.M.R.; Carvalho, P.C.S.; Antunes, I.M.H.R.; Albuquerque, M.T.D.; Santos, A.C.S.; Cunha, P.P.; Henriques, S.B.A. Assessment of metal and metalloid contamination in the waters and stream sediments around the abandoned uranium mine area from Mortorios, central Portugal. J. Geochem. Explor. 2019, 202, 35–48. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, A.; Lázaro, I.; Razo, I.; Briones-Gallardo, R. Geochemical and mineralogical characterization of stream sediments impacted by mine wastes containing arsenic, cadmium and lead in North-Central Mexico. J. Geochem. Explor. 2021, 221, 106707. [Google Scholar] [CrossRef]
Sample | Type | Physico-Chemical Parameters | Concentration (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | pH | Eh (mV) | DO (mg/L) | EC (μS/cm) | TDS | HCO3− | SO42− | Cl− | K+ | Na+ | Ca2+ | Mg2+ | Si | ||
detection limits | 5 | 0.1 | 0.1 | 0.01 | 10 | 20 | 2.5 | 0.018 | 0.007 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | |
P1 | gw | 16.1 | 7.1 | +46.0 | 9.2 | 195.0 | 138.0 | 73.2 | 49.2 | 1.3 | 1.8 | 3.2 | 27.9 | 6.0 | 4.7 |
P2 | gw | 17.6 | 7.9 | −10.6 | 8.7 | 375.0 | 268.0 | 82.2 | 128.9 | 1.6 | 1.8 | 7.9 | 44.7 | 15.2 | 12.1 |
P3 | gw | 16.8 | 7.9 | +130.7 | 7.8 | 1010.0 | 780.0 | 153.1 | 477.0 | 0.8 | 4.6 | 5.7 | 141.2 | 56.9 | 6.8 |
P4 | gw | 18.2 | 7.7 | −57.9 | 5.9 | 435.0 | 296.0 | 248.7 | 39.0 | 6.2 | 1.3 | 71.1 | 31.9 | 5.4 | 7.6 |
P5 | gw | 18.1 | 7.8 | +69.1 | 8.8 | 294.0 | 200.0 | 121.0 | 63.7 | 0.9 | 1.9 | 4.0 | 47.1 | 9.0 | 4.9 |
P6 | st | 19.6 | 7.9 | +120.7 | 9.8 | 205.0 | 150.0 | 100.8 | 38.1 | 0.9 | 1.5 | 2.4 | 41.3 | 4.9 | 3.8 |
P7 | gw | 22.5 | 8.2 | +111.6 | 7.0 | 248.0 | 162.0 | 153.1 | 17.3 | 0.8 | 1.4 | 2.1 | 47.5 | 5.0 | 4.0 |
P8 | gw | 18.9 | 7.9 | +104.9 | 8.9 | 593.0 | 428.0 | 173.3 | 193.9 | 1.4 | 4.0 | 18.0 | 85.5 | 21.2 | 7.2 |
P9 | st | 20.0 | 8.0 | +115.0 | 8.8 | 590.0 | 432.0 | 181.5 | 191.7 | 1.4 | 4.0 | 17.0 | 88.7 | 21.1 | 7.2 |
P10 | st | 21.9 | 8.1 | +109.7 | 8.6 | 583.0 | 436.0 | 175.5 | 202.8 | 1.5 | 3.9 | 17.4 | 83.7 | 20.0 | 7.0 |
P11 | st | 25.7 | 7.7 | +111.1 | 8.5 | 582.0 | 414.0 | 186.7 | 171.4 | 1.7 | 4.2 | 20.2 | 85.9 | 18.8 | 7.4 |
P12 | st | 26.6 | 7.7 | +114.0 | 8.5 | 380.0 | 246.0 | 177.7 | 58.9 | 6.3 | 2.7 | 12.3 | 55.5 | 10.5 | 4.2 |
P13 | st | 21.8 | 7.7 | +110.3 | 8.5 | 425.0 | 304.0 | 115.8 | 135.4 | 2.0 | 3.4 | 14.5 | 60.7 | 14.7 | 6.4 |
P14 | st | 20.7 | 7.7 | +113.7 | 8.5 | 435.0 | 306.0 | 113.5 | 138.8 | 2.0 | 3.4 | 14.6 | 59.8 | 15.0 | 6.4 |
P15 | st | 20.7 | 7.6 | +115.7 | 8.3 | 434.0 | 310.0 | 119.5 | 139.6 | 2.1 | 3.5 | 14.9 | 59.8 | 15.2 | 6.0 |
Sample | Type | Physico-Chemical Parameters | Concentration (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | pH | Eh (mV) | DO (mg/L) | EC (μS/cm) | TDS | HCO3− | SO42− | Cl− | K+ | Na+ | Ca2+ | Mg2+ | Si | ||
detection limits | 0.1 | 0.1 | 0.1 | 0.01 | 10 | 20 | 2.5 | 0.018 | 0.007 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | |
P1 | gw | 16.8 | 7.7 | +128.5 | 9.0 | 52.0 | 35.0 | 51.9 | 19.1 | 1.4 | 1.6 | 2.5 | 16.9 | 3.5 | 6.5 |
P2 | gw | 17.4 | 8.2 | +35.8 | 8.6 | 341.0 | 222.0 | 72.3 | 129.0 | 1.5 | 1.8 | 7.7 | 44.3 | 14.5 | 8.8 |
P3 | gw | 16.3 | 6.7 | +208.6 | 7.8 | 685.0 | 445.0 | 111.0 | 318.0 | 0.6 | 3.7 | 4.6 | 98.3 | 38.8 | 8.1 |
P4 | gw | 17.1 | 7.8 | +146.5 | 8.9 | 115.0 | 74.0 | 241.0 | 15.4 | 6.7 | 1.1 | 70.2 | 19.1 | 2.7 | 6.5 |
P5 | gw | 16.3 | 7.7 | +35.6 | 9.0 | 146.0 | 94.0 | 119.0 | 23.2 | 0.9 | 1.4 | 2.1 | 37.7 | 4.6 | 5.7 |
P6 | st | 15.9 | 8.3 | +74.4 | 9.7 | 129.0 | 84.0 | 115.0 | 22.1 | 0.9 | 1.3 | 1.9 | 35.7 | 4.0 | 5.0 |
P7 | gw | 15.8 | 8.2 | +115.1 | 9.0 | 232.0 | 150.0 | 167.0 | 16.5 | 1.1 | 1.4 | 1.8 | 51.5 | 5.1 | 6.4 |
P8 | gw | 18.7 | 8.0 | +123.8 | 8.6 | 505.0 | 328.0 | 185.0 | 157.0 | 1.1 | 3.4 | 11.8 | 81.6 | 19.4 | 8.2 |
P9 | st | 18.8 | 8.0 | +81.6 | 9.0 | 469.0 | 302.0 | 187.0 | 144.0 | 1.2 | 3.2 | 10.5 | 77.9 | 17.6 | 7.2 |
P10 | st | 19.7 | 8.2 | +99.6 | 9.1 | 463.0 | 300.0 | 187.0 | 142.0 | 1.2 | 3.1 | 10.2 | 76.0 | 17.2 | 7.8 |
P11 | st | 19.8 | 7.7 | +54.4 | 8.2 | 458.0 | 297.0 | 189.0 | 166.0 | 1.5 | 3.9 | 24.4 | 74.5 | 17.4 | 7.1 |
P12 | st | 20.7 | 8.0 | +134.3 | 8.6 | 382.0 | 248.0 | 100.0 | 128.0 | 1.4 | 3.3 | 14.6 | 50.2 | 12.8 | 6.4 |
P13 | st | 20.3 | 8.1 | +107.6 | 8.6 | 390.0 | 254.0 | 128.0 | 106.0 | 3.1 | 3.3 | 15.2 | 53.8 | 11.8 | 6.5 |
P14 | st | 20.1 | 8.0 | +100.1 | 8.8 | 396.0 | 257.0 | 120.0 | 122.0 | 2.2 | 3.4 | 17.0 | 52.4 | 12.4 | 7.0 |
P15 | st | 20.0 | 8.0 | +125.0 | 8.3 | 311.0 | 202.0 | 122.0 | 120.0 | 2.3 | 3.4 | 17.1 | 52.2 | 12.3 | 6.9 |
Element (μg/L) | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | CNS | WHO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry season | Li | 9.09 | 16.98 | 117.19 | 8.49 | 9.32 | 3.11 | 4.01 | 35.90 | 27.01 | 29.31 | 27.11 | 6.44 | 24.66 | 13.79 | 22.83 | ||
B | 26.29 | 51.60 | 162.97 | 120.31 | 46.54 | 27.73 | 25.39 | 187.51 | 161.07 | 182.30 | 183.05 | 53.78 | 125.28 | 124.04 | 120.66 | |||
Al | 46.07 | 17.92 | 8.22 | 56.58 | 68.66 | 20.95 | 15.08 | 70.34 | 63.47 | 114.04 | 126.02 | 113.19 | 136.09 | 176.37 | 126.89 | 200.00 | 200.00 | |
Ti | 2.21 | 0.24 | 0.57 | 0.83 | 1.46 | 0.66 | 0.10 | 0.43 | 1.10 | 3.72 | 1.91 | 29.94 | 2.82 | 3.16 | 2.43 | |||
Mn | 353.38 | 1925.14 | 36.49 | 132.88 | 100.86 | 5.67 | 16.74 | 108.04 | 70.77 | 54.54 | 35.03 | 29.82 | 11.46 | 14.99 | 19.68 | 100.00 | 100.00 | |
Fe | 1563.72 | 8356.48 | 44.58 | 260.37 | 1112.56 | 59.65 | 396.19 | 284.88 | 271.80 | 366.17 | 231.08 | 164.87 | 366.40 | 360.29 | 279.87 | 300.00 | 300.00 | |
Ni | 7.09 | 5.88 | 6.12 | 0.30 | 0.84 | 0.33 | 3.33 | 4.61 | 3.87 | 3.20 | 2.00 | 0.71 | 9.26 | 9.81 | 10.35 | 20.00 | 70.00 | |
Zn | 22.22 | 14.35 | 15.65 | 6.49 | 11.32 | 9.34 | 24.17 | 11.77 | 8.52 | 8.80 | 8.45 | 9.01 | 24.63 | 26.59 | 21.99 | 1000.00 | 3000.00 | |
Mo | 0.45 | 0.13 | 0.40 | 0.42 | 0.64 | 0.25 | 0.34 | 3.06 | 3.15 | 2.77 | 2.25 | 0.56 | 0.71 | 0.74 | 0.73 | |||
Ba | 57.36 | 33.35 | 25.72 | 158.33 | 53.70 | 36.58 | 46.01 | 84.46 | 82.84 | 85.66 | 88.20 | 66.81 | 45.38 | 47.36 | 49.17 | 700.00 | 700.00 | |
Wet season | Li | 3.86 | 13.71 | 98.21 | 1.76 | 2.07 | 1.68 | 2.20 | 23.86 | 19.49 | 19.04 | 31.22 | 20.58 | 15.40 | 18.71 | 15.92 | ||
B | 20.98 | 34.87 | 96.49 | 71.06 | 14.20 | 11.69 | 11.24 | 107.76 | 105.70 | 92.53 | 137.63 | 101.59 | 90.57 | 108.89 | 103.34 | |||
Al | 37.79 | 35.00 | 26.05 | 46.11 | 19.29 | 22.53 | 41.57 | 29.89 | 47.23 | 98.53 | 166.06 | 30.85 | 65.29 | 55.03 | 71.31 | 200.00 | 200.00 | |
Ti | 0.45 | 0.31 | 0.34 | 1.83 | 0.19 | 0.19 | 0.44 | 0.15 | 0.59 | 1.38 | 1.81 | 0.19 | 1.46 | 2.50 | 1.94 | |||
Mn | 57.33 | 1883.86 | 72.80 | 136.58 | 21.52 | 5.30 | 10.89 | 15.57 | 10.28 | 17.44 | 69.50 | 1.70 | 15.08 | 14.39 | 17.46 | 100.00 | 100.00 | |
Fe | 228.75 | 12,872.88 | 34.76 | 203.91 | 157.45 | 52.04 | 73.69 | 163.86 | 128.57 | 221.19 | 428.38 | 63.66 | 126.59 | 103.53 | 118.08 | 300.00 | 300.00 | |
Ni | 2.24 | 6.29 | 10.84 | 0.26 | 0.26 | 0.34 | 0.37 | 2.59 | 2.13 | 1.98 | 3.59 | 10.98 | 7.35 | 7.76 | 6.51 | 20.00 | 70.00 | |
Zn | 2.65 | 6.65 | 10.13 | 0.63 | 0.33 | 1.30 | 39.49 | 1.97 | 1.67 | 1.79 | 21.02 | 10.53 | 6.78 | 6.45 | 4.89 | 1000.00 | 3000.00 | |
Mo | 0.23 | 0.09 | 0.26 | 0.46 | 0.30 | 0.27 | 0.27 | 3.47 | 2.77 | 2.43 | 1.51 | 0.66 | 0.77 | 0.90 | 0.87 | |||
Ba | 42.58 | 33.44 | 20.19 | 167.42 | 37.27 | 28.66 | 48.37 | 93.69 | 84.68 | 85.10 | 100.74 | 34.52 | 44.84 | 42.66 | 43.81 | 700.00 | 700.00 |
pH | EC | HCO3− | SO42− | Cl− | Na+ | Ca2+ | Mg2+ | |
---|---|---|---|---|---|---|---|---|
pH | 1.00 | |||||||
EC | −0.40 | 1.00 | ||||||
HCO3− | −0.14 | 0.42 | 1.00 | |||||
SO42− | −0.36 | 0.95 ** | 0.12 | 1.00 | ||||
Cl− | 0.06 | −0.08 | 0.55 * | −0.30 | 1.00 | |||
Na+ | 0.22 | 0.14 | 0.74 ** | −0.12 | 0.69 ** | 1.00 | ||
Ca2+ | −0.49 | 0.94 ** | 0.28 | 0.94 ** | −0.29 | −0.14 | 1.00 | |
Mg2+ | −0.35 | 0.94 ** | 0.12 | 0.99 ** | −0.27 | −0.14 | 0.94 ** | 1.00 |
F1 | F2 | Communalities | |
---|---|---|---|
pH | −0.51 | 0.07 | 0.26 |
EC | 0.97 | 0.21 | 0.99 |
HCO3− | 0.27 | 0.88 | 0.84 |
SO42− | 0.97 | −0.09 | 0.95 |
Ca2+ | 0.99 | −0.03 | 0.75 |
Mg2+ | 0.97 | −0.08 | 0.87 |
Cl− | −0.25 | 0.83 | 0.97 |
Na+ | −0.08 | 0.93 | 0.94 |
Eigenvalues | 4.19 | 2.38 | |
% of variance explained | 52.41 | 29.81 | |
Cumulative % of variance | 52.41 | 82.21 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | NSB | |
---|---|---|---|---|---|---|---|---|
Cr | 33.0 | 44.1 | 33.7 | 62.7 | 51.1 | 56.8 | 69.9 | 62 |
Mn | 388.2 | 615.9 | 355.0 | 2197.1 | 2402.7 | 2111.5 | 1428.9 | 640 |
Co | 14.1 | 14.8 | 21.3 | 16.5 | 17.2 | 18.8 | 19.6 | 12 |
Ni | 18.4 | 21.6 | 15.3 | 28.8 | 26.5 | 44.9 | 43.8 | 25 |
Cu | 22.4 | 23.1 | 85.3 | 27.4 | 24.4 | 24.4 | 30.9 | 21 |
Zn | 49.9 | 56.2 | 48.0 | 81.6 | 74.6 | 91.4 | 102.0 | 70 |
Rb | 51.4 | 65.6 | 65.4 | 95.7 | 80.7 | 86.1 | 109.0 | / |
Sr | 344.8 | 285.3 | 127.5 | 136.2 | 163.8 | 172.6 | 157.1 | 83 |
Pb | 19.5 | 17.7 | 19.4 | 23.8 | 21.9 | 22.8 | 27.7 | 25 |
P | 442.6 | 480.5 | 285.7 | 548.0 | 489.7 | 447.8 | 603.1 | 521 |
Ti | 1825.0 | 2157.0 | 2446.0 | 3671.0 | 3349.0 | 3601.0 | 4328.0 | 4222 |
Al2O3 | 7.9 | 8.3 | 7.7 | 13.9 | 11.6 | 13.3 | 15.3 | 13.1 |
CaO | 19.9 | 16.2 | 4.8 | 4.5 | 5.7 | 5.2 | 3.5 | 0.8 |
Fe2O3 | 2.4 | 3.8 | 2.7 | 6.4 | 5.1 | 5.8 | 6.7 | 4.4 |
MgO | 0.7 | 0.8 | 0.6 | 1.4 | 1.2 | 1.3 | 1.4 | 1.1 |
Cr | Mn | Co | Ni | Cu | Zn | Rb | Sr | Pb | P | Ti | Al2O3 | CaO | Fe2O3 | MgO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 1.00 | ||||||||||||||
Mn | 0.73 | 1.00 | |||||||||||||
Co | 0.22 | 0.10 | 1.00 | ||||||||||||
Ni | 0.85 * | 0.63 | 0.30 | 1.00 | |||||||||||
Cu | −0.41 | −0.45 | 0.72 | −0.42 | 1.00 | ||||||||||
Zn | 0.96 ** | 0.74 | 0.31 | 0.95 ** | −0.40 | 1.00 | |||||||||
Rb | 0.97 ** | 0.69 | 0.43 | 0.81 * | −0.19 | 0.93 ** | 1.00 | ||||||||
Sr | −0.52 | −0.55 | −0.81 * | −0.37 | −0.45 | −0.51 | −0.69 | 1.00 | |||||||
Pb | 0.89 ** | 0.59 | 0.40 | 0.81 * | −0.21 | 0.91 ** | 0.92 ** | −0.55 | 1.00 | ||||||
P | 0.82 * | 0.53 | −0.31 | 0.61 | −0.75 | 0.73 | 0.70 | −0.01 | 0.69 | 1.00 | |||||
Ti | 0.94 ** | 0.76 * | 0.48 | 0.84 * | −0.19 | 0.95 ** | 0.98 ** | −0.72 | 0.93 ** | 0.63 | 1.00 | ||||
Al2O3 | 0.98 ** | 0.78 * | 0.29 | 0.88 ** | −0.38 | 0.98 ** | 0.96 ** | −0.56 | 0.94 ** | 0.75 | 0.97 ** | 1.00 | |||
CaO | −0.63 | −0.62 | −0.81 * | −0.53 | −0.34 | −0.65 | −0.78 * | 0.98 ** | −0.67 | −0.13 | −0.83 * | −0.68 | 1.00 | ||
Fe2O3 | 0.99 ** | 0.81 * | 0.24 | 0.85 * | −0.41 | 0.96 ** | 0.96 ** | −0.58 | 0.86 * | 0.77 * | 0.95 ** | 0.98 ** | −0.68 | 1.00 | |
MgO | 0.96 ** | 0.88 ** | 0.18 | 0.84 * | −0.48 | 0.95 ** | 0.92 ** | −0.54 | 0.85 * | 0.78 * | 0.94 ** | 0.97 ** | −0.65 | 0.98 ** | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, D.; Wu, Y.; Ren, B.; Yin, H. Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China. Water 2023, 15, 1421. https://doi.org/10.3390/w15071421
Deng D, Wu Y, Ren B, Yin H. Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China. Water. 2023; 15(7):1421. https://doi.org/10.3390/w15071421
Chicago/Turabian StyleDeng, Dongping, Yong Wu, Bangzheng Ren, and Heng Yin. 2023. "Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China" Water 15, no. 7: 1421. https://doi.org/10.3390/w15071421
APA StyleDeng, D., Wu, Y., Ren, B., & Yin, H. (2023). Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China. Water, 15(7), 1421. https://doi.org/10.3390/w15071421