Hydrochemical Characteristics and Ion Sources of Soil-Soluble Salt in the Water-Level Fluctuation Zone of the Lower Jinsha River Basin
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Soil Samples Sampling
3.2. Analysis of Hydrochemistry Method
3.3. Hydrochemical Analysis
4. Results
5. Discussion
5.1. The Distribution Characteristics of Major Ions in Soil-Soluble Salt
5.2. The Major Ion Sources of Soil-Soluble Salt
5.3. The Source Contributions for Major Ions in Soil-Soluble Salt
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yinglan, A.; Wang, G.; Liu, T.; Xue, B.; Kuczera, G. Spatial variation of correlations between vertical soil water and evapotranspiration and their controlling factors in a semi-arid region. J. Hydrol. 2019, 574, 53–63. [Google Scholar]
- De Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; Jardim, A.M.; Souza, C.A.A.; Júnior, G.; Morais, J.E.F.; Souza, L.S.B. Spatial and temporal dynamics of soil moisture for surfaces with a change in land use in the semi-arid region of Brazil. Catena 2020, 188, 104457. [Google Scholar] [CrossRef]
- Xu, D.; Han, J.J.; Zhao, Y.Y. Characterization of soil water by the means of hydrogen and oxygen isotope ratio at dry-wet season under different soil layers in the dry-hot valley of Jinsha River. Open Chem. 2020, 18, 822–832. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhao, Y.Y.; Wang, K.Q.; Duan, X.; Xu, G.Q. Soil preferential flow characteristics in active and stable gully catchment areas of the Dry-hot Valleys of the Jinsha River (in Chinese with English abstract). J. Soil Water Conserv. 2022, 36, 119–127. [Google Scholar]
- Bao, Y.; He, X.; Wen, A.; Gao, P.; Tang, Q.; Yan, D.; Long, Y. Dynamic changes of soil erosion in a typical disturbance zone of China’s Three Gorges Reservoir. Catena 2018, 169, 128–139. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gao, B.; Xu, D.Y.; Lu, J.; Zhou, H.D.; Gao, L. Heavy metals in the water-level-fluctuation zone soil of the three Gorges Reservoir, China: Remobilization and catchment-wide transportation. J. Hydrol. 2022, 612, 128108. [Google Scholar] [CrossRef]
- Xiao, H.; Guo, P.; Zhang, Q.H.; Hu, H.; Hong, H.; Zhang, L.; Yang, Y.S.; Xia, Z.Y.; Li, M.Y.; Kang, H.L.; et al. Variation in soil properties and its influence on the dynamic change of soil erosion resistance to overland flow in the water-level fluctuation zone of the Three Gorges Reservoir, China. Catena 2022, 213, 106141. [Google Scholar] [CrossRef]
- Han, J.J.; Duan, X.; Zhao, Y.Y.; Xiong, H.Q. Spatial and temporal variability of soil moisture on sloping lands of different land use types in a Dry-hot Valley (in Chinese with English abstract). J. Soil Water Conserv. 2017, 31, 129–136. [Google Scholar]
- Yue, X.W.; Fang, H.D.; Qian, K.J.; Ji, Z.H.; Yang, Y.X.; Pan, Z.X.; Peng, H.; Fang, J.; Kui, J.L. Effect of different land use on soil moisture in Dry-hot Valley of Jinsha River (in Chinese with English abstract). J. Anhui Agric. Sci. 2010, 38, 14963–14965. [Google Scholar]
- Han, J.L.; Duan, X.; Zhao, Y.Y. Spatial and temporal variability of soil moisture on slope land of different vegetation of dry-hot valley in Jinsha River (in Chinese with English abstract). Arid Land Geogr. 2019, 42, 121–130. [Google Scholar]
- Wu, H.; Xiong, D.H.; Zhang, B.J.; Guo, M.; Yang, D.; Zhang, S.; Xiao, L.; Fang, H.D. Spatial and temporal change of soil water in different sections of Gully in Dry-hot Valley region of Southwest China (in Chinese with English abstract). Southwest China J. Agric. Sci. 2018, 31, 384–392. [Google Scholar]
- Wang, Y.D.; Zhang, M.Y.; Fan, J.C.; He, G.X.; Zhang, M.Z.; Fang, H.D. Soil Moisture of Leucaena leucocephala Plantations in the Dry-hot Valley of Jinsha River, Yunnan (in Chinese with English abstract). J. Trop. Biol. 2018, 9, 61–69. [Google Scholar]
- Hou, L.Z.; Wang, X.S.; Hu, B.X.; Shang, J.; Wang, L. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation. J. Hydrol. 2016, 540, 386–396. [Google Scholar] [CrossRef]
- Huang, D.W.; Chen, J.S.; Zhan, L.C.; Wang, T.; Su, Z.G. Evaporation from sand and loess soils: An experimental approach. Transp. Porous Media 2016, 113, 639–651. [Google Scholar] [CrossRef]
- Han, D.M.; Zhou, T.T. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment. J. Hydrol. 2018, 559, 13–29. [Google Scholar] [CrossRef]
- Rao, W.B.; Zheng, F.; Tan, H.; Yong, B.; Jin, K.; Wang, S.; Zhang, W.B.; Chen, T.Q.; Wang, Y.N. Major ion chemistry of a representative river in South-central China: Runoff effects and controlling mechanisms. J. Hazard. Mater. 2019, 378, 120755. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.G.; Rao, W.B.; Tan, H.B.; Guo, H.Y.; Ta, W.Q.; Zhang, X.Y. Controlling factors and health risks of groundwater chemistry in a typical alpine watershed based on machine learning methods. Sci. Total Environ. 2023, 854, 158737. [Google Scholar] [CrossRef]
- Jin, L.X.; Andrews, D.M.; Holmes, G.H.; Lin, H.; Brantley, S.L. Opening the “Black Box”: Water chemistry reveals hydrological controls on weathering in the Susquehanna shale hills critical zone observatory. Vadose Zone J. 2011, 10, 928–942. [Google Scholar] [CrossRef]
- Pan, F.; Ma, J.Z.; Zhou, X.Y.; Edmunds, W.M.; Gates, G.B. Geostatistical characterization of soil moisture and chloride distribution in deep vadose profiles of the Badain Jaran Desert, Northwestern China. Environ. Earth Sci. 2013, 70, 977–991. [Google Scholar] [CrossRef]
- Tan, H.B.; Liu, Z.H.; Rao, W.B.; Wei, H.Z.; Zhang, Y.D.; Jin, B. Stable isotopes of soil water: Implications for soil water and shallow groundwater recharge in hill and gully regions of the Loess Plateau, China. Agric. Ecosyst. Environ. 2017, 243, 1–9. [Google Scholar] [CrossRef]
- Jin, K.; Rao, W.B.; Wang, S.; Zhang, W.B.; Zheng, F.W.; Li, T.N.; Lu, Y.; Zhang, Q.Z. Stable isotopes (δ18O and δ2H) and chemical characteristics of soil solution in the unsaturated zone of an arid desert. J. Radioanal. Nucl. Chem. 2021, 330, 367–380. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, X.F.; Xu, Q.X.; Liu, D.C.; Yuan, J.; Wang, M.L. Variation and driving factors of water discharge and sediment load in different regions of the Jinsha River Basin in China in the past 50 years. Water 2019, 11, 1109. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Xiong, D.; Xiao, L.; Zhang, S.; Yuan, Y.; Su, Z.A.; Zhang, B.J.; Yang, D. Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region. J. Mountain Sci. 2018, 15, 1546–1558. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, Y.; Jin, K.; Zhou, H.M.; Wan, D.; Zhang, Q.Z.; Yan, J.M. Discussion on ecological restoration in Dry-hot Valley (in Chinese with English abstract). J. Yangtze River Sci. Res. Inst. 2021, 38, 69–75. [Google Scholar]
- Wan, D.; Zhou, H.M.; Lu, Y.; Jin, K.; Yu, J.; Zhang, Q.Z.; Hu, Y.; Yan, J.M. Progress and perspective of vegetation restoration in Water-level-fluctuating zone of Dry-hot Valley reservoirs in Jinsha River (in Chinese with English abstract). Ecol. Environ. Monit. Three Gorges 2021, 6, 9–21. [Google Scholar]
- Lin, Y.M.; Chen, A.M.; Yan, S.W.; Rafay, L.; Du, K.; Wang, D.J.; Ge, Y.G.; Li, J. Available soil nutrients and water content affect leaf nutrient concentrations and stoichiometry at different ages of Leucaena leucocephala forests in dry-hot valley. J. Soils Sediments 2019, 19, 511–521. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1971, 172, 870–872. [Google Scholar] [CrossRef]
- Li, Y.Z.; Gao, Z.J.; Liu, J.T.; Wang, M.; Han, C. Hydrogeochemical and isotopic characteristics of spring water in the Yarlung Zangbo River Basin, Qinghai-Tibet Plateau, Southwest China. J. Mt. Sci. 2021, 18, 2061–2078. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Yang, X.P.; Rioual, P.; Qin, X.G.; Liu, Z.T.; Xiong, H.G.; Yu, J.J. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Appl. Geochem. 2011, 26, 1535–1548. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H.; Zhang, Y.; Yang, N.; Jing, L.; Yu, P. Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, northwest China. Expo. Health 2016, 8, 331–348. [Google Scholar] [CrossRef]
- Chen, Z.L.; Fang, F.; Shao, Y.; Jiang, Y.X.; Huang, J.J.; Guo, J.S. The biotransformation of soil phosphorus in the water level fluctuation zone could increase eutrophication in reservoirs. Sci. Total Environ. 2021, 763, 142976. [Google Scholar] [CrossRef]
- Wang, S.; Rao, W.B.; Qian, J.; Mao, C.P.; Li, K. Phosphorus species in bottom sediments of the Three Gorges Reservoir during low and high water level periods. Environ. Sci. Pollut. Res. 2020, 27, 17923–17934. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.Q.; Zhao, Z.Q.; Wang, Q.L.; Li, S.L.; Li, J.; Wang, B.L. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Chen, J.S.; Sun, X.X.; Gu, W.Z.; Tan, H.B.; Rao, W.B.; Dong, Z.; Liu, X.Y.; Su, Z.G. Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, North China. Geochem. Int. 2012, 50, 455–465. [Google Scholar] [CrossRef]
- Zhao, J.B.; Ma, Y.D.; Luo, X.Q.; Yue, D.P.; Shao, T.J.; Dong, Z.B. The discovery of surface runoff in the megadunes of Badain Jaran Desert, China, and its significance. Sci. China Earth Sci. 2017, 60, 707–719. [Google Scholar] [CrossRef]
- Zhang, L.M.; Huangpu, C.H.; Yuan, Y.S.; Meng, Y.Y.; Jia, X. The correlations between vegetation composition and soil characteristics in the riparian zone of Shengjin Lake (in Chinese with English abstract). Pratacultural Sci. 2021, 38, 52–62. [Google Scholar]
- Rao, W.B.; Han, G.Y.; Tan, H.B.; Jin, K.; Wang, S.; Chen, T.Q. Chemical and Sr isotopic characteristics of rainwater on the Alxa Desert Plateau, North China: Implication for air quality and ion sources. Atmos. Res. 2017, 193, 163–172. [Google Scholar] [CrossRef]
- Rao, W.B.; Chen, J.; Yang, J.D.; Ji, J.F.; Zhang, G.X. Sr isotopic and elemental characteristics of calcites in the Chinese deserts: Implications for eolian Sr transport and seawater Sr evolution. Geochim. Cosmochim. Acta 2009, 73, 5600–5618. [Google Scholar] [CrossRef]
- Wang, D.X.; Li, Y.P.; Chen, Y.; Zhou, S.C. Study on the change trend and ion characteristics of atmospheric precipitation in Kunming from 2015 to 2019 (in Chinese with English abstract). Environ. Sci. Surv. 2021, 40, 47–51. [Google Scholar]
- Chatterjee, J.; Singh, S.K. 87Sr/86Sr and major ion composition of rainwater of Ahmedabad, India: Sources of base cations. Atmos. Environ. 2012, 63, 60–67. [Google Scholar] [CrossRef]
Location | Site | Altitude | Value | SWC | pH | EC | K+ | Na+ | Ca2+ | Mg2+ | Cl− | NO3− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WDDR restoration | XM1 | 971 m | Min. | 3.71 | 7.26 | 4.49 | 36 | 116 | 304 | 81 | 109 | 52 | 263 | 407 |
Max. | 8.24 | 8.00 | 30.96 | 270 | 802 | 3443 | 801 | 1548 | 103 | 3826 | 3955 | |||
Mean | 6.30 | 7.71 | 14.56 | 78 | 331 | 1341 | 352 | 429 | 82 | 1052 | 1349 | |||
Median | 6.22 | 7.67 | 11.47 | 59 | 265 | 1005 | 277 | 357 | 81 | 734 | 945 | |||
SD | 1.54 | 0.25 | 8.62 | 69 | 221 | 993 | 230 | 407 | 19 | 1023 | 1036 | |||
XM2 | 974 m | Min. | 4.62 | 8.00 | 5.18 | 43 | 130 | 479 | 31 | 45 | 72 | 182 | 569 | |
Max. | 7.00 | 8.49 | 10.83 | 145 | 285 | 1000 | 162 | 167 | 221 | 470 | 1191 | |||
Mean | 6.19 | 8.32 | 7.23 | 60 | 215 | 644 | 58 | 97 | 96 | 323 | 757 | |||
Median | 6.10 | 8.41 | 7.05 | 50 | 223 | 621 | 47 | 91 | 82 | 325 | 715 | |||
SD | 0.72 | 0.18 | 1.46 | 30 | 50 | 140 | 38 | 40 | 45 | 109 | 172 | |||
WDDR recovery | WDD | 959 m | Min. | 7.17 | 7.81 | 1.99 | 6 | 68 | 133 | 32 | 49 | 39 | 331 | 76 |
Max. | 29.73 | 8.20 | 10.29 | 123 | 303 | 928 | 202 | 158 | 351 | 1184 | 816 | |||
Mean | 17.78 | 7.98 | 4.75 | 25 | 158 | 398 | 99 | 79 | 130 | 720 | 303 | |||
Median | 15.98 | 7.97 | 4.20 | 16 | 162 | 335 | 90 | 66 | 85 | 681 | 196 | |||
SD | 9.10 | 0.11 | 2.55 | 35 | 70 | 249 | 55 | 32 | 112 | 286 | 257 | |||
BHTR restoration | GYJ1 | 812 m | Min. | 0.74 | 7.91 | 10.53 | 114 | 414 | 714 | 124 | 287 | 116 | 635 | 520 |
Max. | 6.54 | 8.25 | 41.67 | 2789 | 2017 | 2865 | 537 | 1833 | 806 | 6321 | 4373 | |||
Mean | 3.63 | 8.03 | 19.78 | 441 | 764 | 1296 | 235 | 832 | 430 | 2287 | 1288 | |||
Median | 3.43 | 8.00 | 17.16 | 194 | 617 | 1165 | 207 | 681 | 474 | 1638 | 1023 | |||
SD | 1.69 | 0.11 | 9.41 | 826 | 452 | 652 | 122 | 535 | 229 | 1736 | 1137 | |||
GYJ2 | 820 m | Min. | 4.08 | 7.90 | 4.52 | 75 | 71 | 327 | 99 | 82 | 67 | 297 | 355 | |
Max. | 10.06 | 8.32 | 19.74 | 227 | 213 | 1763 | 421 | 551 | 334 | 4475 | 1026 | |||
Mean | 6.61 | 8.08 | 9.13 | 129 | 144 | 706 | 194 | 191 | 152 | 1419 | 612 | |||
Median | 6.31 | 8.11 | 7.63 | 110 | 150 | 569 | 160 | 157 | 117 | 1221 | 549 | |||
SD | 1.93 | 0.14 | 4.47 | 54 | 48 | 427 | 95 | 135 | 98 | 1211 | 263 | |||
BHTR recovery | MG | 806 m | Min. | 8.14 | 7.82 | 2.65 | 49 | 34 | 222 | 40 | 43 | 80 | 178 | 193 |
Max. | 15.51 | 8.22 | 4.93 | 109 | 125 | 417 | 72 | 101 | 210 | 336 | 521 | |||
Mean | 12.51 | 8.00 | 3.34 | 65 | 62 | 277 | 51 | 82 | 149 | 226 | 280 | |||
Median | 13.70 | 7.99 | 2.94 | 55 | 50 | 250 | 47 | 84 | 151 | 209 | 233 | |||
SD | 2.90 | 0.12 | 0.78 | 20 | 30 | 64 | 11 | 17 | 35 | 51 | 105 | |||
JT | 819 m | Min. | 8.74 | 7.99 | 1.98 | 54 | 16 | 126 | 26 | 49 | 46 | 239 | 131 | |
Max. | 15.50 | 8.42 | 7.49 | 105 | 49 | 790 | 128 | 106 | 164 | 1180 | 661 | |||
Mean | 13.33 | 8.25 | 3.60 | 67 | 28 | 324 | 53 | 70 | 88 | 382 | 276 | |||
Median | 14.41 | 8.25 | 2.79 | 58 | 23 | 238 | 36 | 70 | 70 | 267 | 195 | |||
SD | 2.49 | 0.14 | 1.81 | 19 | 12 | 213 | 37 | 15 | 40 | 295 | 177 | |||
QJ | 810 m | Min. | 3.11 | 8.33 | 3.18 | 68 | 54 | 198 | 59 | 61 | 33 | 148 | 298 | |
Max. | 14.19 | 8.55 | 16.36 | 348 | 376 | 1065 | 213 | 284 | 148 | 727 | 1702 | |||
Mean | 9.86 | 8.44 | 5.95 | 121 | 124 | 371 | 95 | 178 | 65 | 289 | 562 | |||
Median | 10.79 | 8.44 | 4.56 | 88 | 88 | 273 | 81 | 191 | 50 | 214 | 403 | |||
SD | 3.54 | 0.08 | 3.91 | 85 | 98 | 258 | 47 | 88 | 37 | 167 | 424 |
WDDR | SWC | pH | EC | K+ | Na+ | Ca2+ | Mg2+ | Cl− | NO3− | SO42− | HCO3− | BHTR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | 1 | 0.187 | −0.803 ** | −0.409 ** | −0.643 ** | −0.788 ** | −0.812 ** | −0.572 ** | −0.487 ** | −0.577 ** | −0.691 ** | SWC |
pH | −0.041 | 1 | −0.135 | 0.055 | −0.243 | −0.144 | −0.117 | −0.214 | −0.354 * | −0.227 | 0.009 | pH |
EC | −0.506 ** | −0.521 ** | 1 | 0.717 ** | 0.759 ** | 0.973 ** | 0.921 ** | 0.698 ** | 0.732 ** | 0.670 ** | 0.880 ** | EC |
K+ | −0.500 ** | −0.241 | 0.774 ** | 1 | 0.258 | 0.717 ** | 0.672 ** | 0.261 | 0.429 ** | 0.071 | 0.908 ** | K+ |
Na+ | −0.450 * | −0.330 | 0.923 ** | 0.620 ** | 1 | 0.624 ** | 0.540 ** | 0.806 ** | 0.637 ** | 0.804 ** | 0.478 ** | Na+ |
Ca2+ | −0.470 ** | −0.477 ** | 0.991 ** | 0.805 ** | 0.921 ** | 1 | 0.951 ** | 0.690 ** | 0.703 ** | 0.617 ** | 0.876 ** | Ca2+ |
Mg2+ | −0.344 | −0.675 ** | 0.953 ** | 0.617 ** | 0.875 ** | 0.921 ** | 1 | 0.588 ** | 0.606 ** | 0.634 ** | 0.830 ** | Mg2+ |
Cl− | −0.267 | −0.467 ** | 0.707 ** | 0.204 | 0.779 ** | 0.654 ** | 0.793 ** | 1 | 0.836 ** | 0.580 ** | 0.406 ** | Cl− |
NO3− | −0.209 | 0.089 | 0.064 | 0.051 | −0.023 | 0.008 | 0.014 | −0.096 | 1 | 0.612 ** | 0.472 ** | NO3− |
SO42− | 0.014 | −0.407 * | 0.506 ** | −0.005 | 0.647 ** | 0.456 ** | 0.652 ** | 0.902 ** | −0.054 | 1 | 0.274 | SO42− |
HCO3− | −0.532 | −0.422 ** | 0.944 ** | 0.890 ** | 0.818 ** | 0.961 ** | 0.834 ** | 0.452 * | −0.01 | 0.205 | 1 | HCO3− |
Location | Variation | Surface | 0–50 cm | 50–100 cm | |||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | ||
WDDR | SWC | −0.589 | 0.808 | −0.557 | 0.735 | −0.836 | 0.410 |
pH | −0.991 | −0.137 | −0.663 | 0.090 | 0.213 | −0.906 | |
EC | 1.000 | −0.003 | 0.993 | 0.085 | 0.987 | 0.127 | |
K+ | 0.993 | −0.119 | 0.823 | −0.506 | 0.907 | −0.355 | |
Na+ | 0.939 | 0.345 | 0.905 | 0.251 | 0.943 | −0.056 | |
Ca2+ | 1.000 | −0.005 | 0.987 | 0.145 | 0.979 | 0.018 | |
Mg2+ | 0.996 | 0.086 | 0.940 | 0.265 | 0.726 | 0.653 | |
Cl− | 0.991 | 0.136 | 0.929 | 0.313 | 0.766 | 0.599 | |
NO3− | −0.470 | −0.883 | −0.474 | 0.675 | 0.850 | −0.129 | |
SO42− | −0.451 | 0.892 | 0.858 | 0.483 | 0.231 | 0.826 | |
HCO3− | 0.996 | −0.090 | 0.967 | −0.212 | 0.944 | −0.261 | |
Variability (%) | 78.057 | 21.943 | 71.364 | 16.343 | 65.149 | 24.427 | |
Cumulative (%) | 78.057 | 100.000 | 71.364 | 87.708 | 65.149 | 89.576 | |
BHTR | SWC | −0.939 | −0.006 | −0.874 | 0.334 | −0.900 | 0.362 |
pH | 0.563 | 0.425 | −0.532 | 0.561 | −0.461 | −0.482 | |
EC | 0.995 | −0.082 | 0.988 | 0.133 | 0.996 | 0.017 | |
K+ | 0.885 | −0.436 | 0.954 | −0.139 | 0.825 | −0.504 | |
Na+ | 0.928 | −0.243 | 0.823 | 0.403 | 0.930 | 0.158 | |
Ca2+ | 0.984 | 0.061 | 0.961 | −0.082 | 0.992 | 0.059 | |
Mg2+ | 0.948 | 0.250 | 0.928 | −0.134 | 0.915 | −0.248 | |
Cl− | 0.953 | 0.249 | 0.817 | 0.101 | 0.800 | 0.364 | |
NO3− | 0.970 | −0.003 | 0.847 | 0.256 | 0.753 | 0.570 | |
SO42− | 0.270 | 0.936 | 0.823 | 0.433 | 0.855 | 0.292 | |
HCO3− | 0.931 | −0.360 | 0.920 | −0.209 | 0.802 | −0.557 | |
Variability (%) | 77.179 | 14.279 | 75.473 | 8.695 | 72.392 | 14.191 | |
Cumulative (%) | 77.179 | 91.458 | 75.473 | 84.168 | 72.392 | 86.583 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, K.; Zhang, Q.; Yu, J.; Lu, Y.; Zhou, H.; Wan, D.; Zhao, C.; Hu, Y. Hydrochemical Characteristics and Ion Sources of Soil-Soluble Salt in the Water-Level Fluctuation Zone of the Lower Jinsha River Basin. Water 2023, 15, 1403. https://doi.org/10.3390/w15071403
Jin K, Zhang Q, Yu J, Lu Y, Zhou H, Wan D, Zhao C, Hu Y. Hydrochemical Characteristics and Ion Sources of Soil-Soluble Salt in the Water-Level Fluctuation Zone of the Lower Jinsha River Basin. Water. 2023; 15(7):1403. https://doi.org/10.3390/w15071403
Chicago/Turabian StyleJin, Ke, Qianzhu Zhang, Jiang Yu, Yang Lu, Huoming Zhou, Dan Wan, Cha Zhao, and Yue Hu. 2023. "Hydrochemical Characteristics and Ion Sources of Soil-Soluble Salt in the Water-Level Fluctuation Zone of the Lower Jinsha River Basin" Water 15, no. 7: 1403. https://doi.org/10.3390/w15071403
APA StyleJin, K., Zhang, Q., Yu, J., Lu, Y., Zhou, H., Wan, D., Zhao, C., & Hu, Y. (2023). Hydrochemical Characteristics and Ion Sources of Soil-Soluble Salt in the Water-Level Fluctuation Zone of the Lower Jinsha River Basin. Water, 15(7), 1403. https://doi.org/10.3390/w15071403