Life-History Traits and Acclimation Ability of a Copepod Species from the Dripping Waters of the Corchia Cave (Apuan Alps, Tuscany, Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Biological Monitoring and Rearing
2.3. Protocol of Respirometry Trials
2.4. Statistical Analyses
3. Results
3.1. Life-History Traits
3.2. Oxygen Consumption Rates
4. Discussion
4.1. Life-History Traits
4.2. Oxygen Consumption Rates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mammola, S.; Amorim, I.R.; Bichuette, M.E.; Borges, P.A.; Cheeptham, N.; Cooper, S.J.B.; Culver, D.C.; Deharveng, L.; Eme, D.; Ferreira, R.L.; et al. Fundamental research questions in subterranean biology. Biol. Rev. 2020, 95, 1855–1872. [Google Scholar] [CrossRef] [PubMed]
- Mammola, S.; Lunghi, E.; Bilandžija, H.; Cardoso, P.; Grimm, V.; Schmidt, S.I.; Hesselberg, T.; Martínez, A. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 2021, 11, 5911–5926. [Google Scholar] [CrossRef] [PubMed]
- Hose, G.C.; Chariton, A.A.; Daam, M.A.; Di Lorenzo, T.; Galassi, D.M.P.; Halse, S.A.; Reboleira, A.S.P.; Robertson, A.L.; Schmidt, S.I.; Korbel, K.L. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct. Ecol. 2022, 36, 2200–2214. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Di Marzio, W.D.; Spigoli, D.; Baratti, M.; Messana, G.; Cannicci, S.; Galassi, D.M.P. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 2015, 60, 426–435. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Reboleira, A.S.P. Thermal acclimation and metabolic scaling of a groundwater asellid in the climate change scenario. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Carpenter, J.H. Forty-year natural history study of Bahalana geracei Carpenter, 1981, an anchialine cave-dwelling isopod (Crustacea, Isopoda, Cirolanidae) from San Salvador Island, Bahamas: Reproduction, growth, longevity, and population structure. Subterran. Biol. 2021, 37, 105–156. [Google Scholar] [CrossRef]
- Rütz, N.K.; Marxsen, J.; Wolters, V. Long-term cultivation of the groundwater amphipod Niphargus aquilex (Crustacea). Hydrobiologia 2023, 850, 269–281. [Google Scholar] [CrossRef]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of size and temperature on metabolic rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef]
- Fossen, E.I.F.; Pélabon, C.; Einum, S. Genetic and environmental effects on the scaling of metabolic rate with body size. J. Exp. Biol. 2019, 222, jeb193243. [Google Scholar] [CrossRef]
- Shokri, M.; Cozzoli, F.; Vignes, F.; Bertoli, M.; Pizzul, E.; Basset, A. Metabolic rate and climate change across latitudes: Evidence of mass-dependent responses in aquatic amphipods. J. Exp. Biol. 2022, 225, jeb244842. [Google Scholar] [CrossRef]
- Willmer, P.; Stone, G.; Johnston, I. Environmental Physiology of Animals, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–768. [Google Scholar]
- Huey, R.B.; Kingsolver, J.G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 1989, 4, 131–135. [Google Scholar] [CrossRef]
- Mermillod-Blondin, F.; Lefour, C.; Lalouette, L.; Renault, D.; Malard, F.; Simon, L.; Douady, C.J. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 2013, 216, 1683–1694. [Google Scholar] [CrossRef]
- Peck, L.S.; Morley, S.A.; Richard, J.; Clark, M.S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 2014, 217, 16–22. [Google Scholar] [CrossRef]
- Iepure, S. Ice cave fauna. In Ice Caves, 1st ed.; Perşoiu, A., Lauritzen, A.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–171. [Google Scholar] [CrossRef]
- Issartel, J.; Hervant, F.; Voituron, Y.; Renault, D.; Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 2005, 141, 1–7. [Google Scholar] [CrossRef]
- Colson-Proch, C.; Morales, A.; Hervant, F.; Konecny, L.; Moulin, C.; Douady, C.J. First cellular approach of the effects of global warming on groundwater organisms: A study of the HSP70 gene expression. Cell Stress Chaperones 2010, 15, 259–270. [Google Scholar] [CrossRef]
- Pallarés, S.; Colado, R.; Botella-Cruz, M.; Montes, A.; Balart-García, P.; Bilton, D.T.; Millán, A.; Ribera, I.; Sánchez-Fernández, D. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 2021, 24, 482–490. [Google Scholar] [CrossRef]
- Deharveng, L.; Stoch, F.; Gibert, J.; Bedos, A.; Galassi, D.M.P.; Zagmajster, M.; Brancelj, A.; Camacho, A.; Fiers, F.; Martin, P.; et al. Groundwater biodiversity in Europe. Freshw. Biol. 2009, 54, 709–726. [Google Scholar] [CrossRef]
- Galassi, D.M.P. Groundwater copepods: Diversity patterns over ecological and evolutionary scales. Hydrobiologia 2001, 453, 227–253. [Google Scholar] [CrossRef]
- Galassi, D.M.P.; Huys, R.; Reid, J.W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 2009, 54, 691–708. [Google Scholar] [CrossRef]
- Ikeda, T. Metabolism in mesopelagic and bathypelagic copepods: Reply to Childress et al. (2008). Mar. Ecol. Prog. Ser. 2008, 373, 193–198. [Google Scholar] [CrossRef]
- Dole-Olivier, M.J.; Galassi, D.M.P.; Marmonier, P.; Creuzé des Châtelliers, M. The biology and ecology of lotic microcrustaceans. Freshw. Biol. 2000, 44, 63–91. [Google Scholar] [CrossRef]
- Fattorini, S.; Borges, P.A.V.; Fiasca, B.; Galassi, D.M.P. Trapped in the web of water: Groundwater-fed springs are island-like ecosystems for the meiofauna. Ecol. Evol. 2006, 6, 8389–8401. [Google Scholar] [CrossRef] [PubMed]
- Pleşa, C. Recherches sur la périodicité de reproduction chez les cavernicoles. Spelunca Mémoires 1967, 5, 295–299. [Google Scholar]
- Pleşa, C. Cercetări asupra periodicităţii reproductive la unele crustacee cavernicole troglobionte. In Résumé de Thése de Doctorat en Biologie; Inst. Biologie “Tr. Săvulescu”: București, Romania, 1969; p. 30. [Google Scholar]
- Lescher-Moutoue, F. Sur la biologie et l’écologie des copépodes cyclopides hypogés (Crustacés). Ann. Spéliol. 1973, 28, 429–502. [Google Scholar]
- Notenboom, J.; Boessenkool, J.J. Toxicity of Selected Pesticides to the Groundwater Copepod Parastenocaris germanica (Crustacea); RIVM Rapport 710302005; RIVM: Bilthoven, The Nederlands, 1994. [Google Scholar]
- Baneschi, I.; Piccini, L.; Regattieri, E.; Isola, I.; Guidi, M.; Lotti, L.; Mantelli, F.; Menichetti, M.; Drysdale, R.N.; Zanchetta, G. Hypogean microclimatology and hydrology of the 800–900 m asl in the Monte Corchia Cave (Tuscany, Italy): Preliminary considerations and implications for paleoclimatological studies. Acta Carsologica 2011, 40, 175–187. [Google Scholar] [CrossRef]
- Piccini, L.; Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.; Isola, I.; Fallick, A.E.; Leone, G.; Doveri, M.; Mussi, M.; Mantelli, F.; et al. The environmental features of the Monte Corchia cave system (Apuan Alps, central Italy) and their effects on speleothem growth. Int. J. Speleol. 2008, 37, 153–172. [Google Scholar] [CrossRef]
- Doveri, M.; Piccini, L.; Menichini, M. Hydrodynamic and geochemical features of metamorphic carbonate aquifers and implications for water management: The Apuan Alps (NW Tuscany, Italy) case study. In The Handbook of Environmental Chemistry; Younos, T., Schreiber, M., Kosič Ficco, K., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 68, pp. 209–249. [Google Scholar] [CrossRef]
- Piccini, L. Speleogenesis in highly geodynamic contexts: The quaternary evolution of Monte Corchia multi-level karst system (Alpi Apuane, Italy). Geomorphology 2011, 134, 49–61. [Google Scholar] [CrossRef]
- Piccini, L.; Mantelli, F.; Montigiani, A.; Cecconi, E.; Lotti, L. Idrogeologia del sistema carsico del Monte Corchia: Sintesi dei dati e delle attuali conoscenze. Acta Apuana 2015, 2012, 23–32. [Google Scholar]
- Mantelli, F.; Piccini, L.; Scala, C.; Menichetti, S.; Lotti, L.; Montigiani, A.; De Sio, F.; Occhini, F. Antro Del Corchia-1997–2017 20 Anni Di Monitoraggio e Ricerche; ARPAT: Florence, Italy, 2021; ISBN 978-88-96693-27-8. Available online: https://www.arpat.toscana.it/documentazione/catalogo-pubblicazioni-arpat/antro-del-corchia-1997-2017 (accessed on 21 February 2023).
- Pipan, T. Epikarst—A promising habitat: Copepod fauna, its diversity and ecology: A case study from Slovenia (Europe). In Carsologica, 1st ed.; Gabrovšek, F., Ed.; Založba ZRC: Ljubljana, Slovenia, 2005; Volume 5. [Google Scholar] [CrossRef]
- Pipan, T.; Culver, D.C. Estimating biodiversity in the epikarstic zone of a West Virginia cave. J. Cave Karst. Stud. 2005, 67, 103–1091. [Google Scholar]
- Pipan, T.; Culver, D.C. Regional species richness in an obligate subterranean dwelling fauna–epikarst copepods. J. Biogeogr. 2007, 34, 854–861. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Di Marzio, W.D.; Fiasca, B.; Galassi, D.M.P.; Korbel, K.; Iepure, S.; Hose, G.C. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 2019, 681, 292–304. [Google Scholar] [CrossRef]
- Taylor, C.A.; Stefan, H.G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 2009, 375, 601–612. [Google Scholar] [CrossRef]
- Bovolo, C.I.; Parkin, G.; Sophocleous, M. Groundwater Resources, Climate and Vulnerability. Environ. Res. Lett. 2009, 4, 035001. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed groundwater temperature response to recent climate change. Hydrol. Earth Syst. Sci. 2014, 18, 4453–4466. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Galassi, D.M.P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations? Water 2017, 9, 951. [Google Scholar] [CrossRef]
- Cifoni, M.; Galassi, D.M.P.; Faraloni, C.; Di Lorenzo, T. Test procedures for measuring the (sub) chronic effects of chemicals on the freshwater cyclopoid Eucyclops serrulatus. Chemosphere 2017, 173, 89–98. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Feller, R.J.; Warwick, R.M. Energetics. In Introduction to the Study of Meiofauna, 1st ed.; Higgins, R.P., Thiel, H., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1988; pp. 181–196. [Google Scholar]
- Reiss, J.; Schmid-Araya, J.M. Existing in plenty: Abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshw. Biol. 2008, 53, 652–668. [Google Scholar] [CrossRef]
- Reiss, J.; Schmid-Araya, J.M. Life history allometries and production of small fauna. Ecology 2010, 91, 497–507. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-E Ltd.: Plymouth, UK, 2015. [Google Scholar]
- Galassi, D.M.P.; Fiasca, B.; Di Lorenzo, T.; Montanari, A.; Porfirio, S.; Fattorini, S. Groundwater biodiversity in a chemoautotrophic cave ecosystem: How geochemistry regulates microcrustacean community structure. Aquat. Ecol. 2017, 51, 75–90. [Google Scholar] [CrossRef]
- Dickson, G.W. The Importance of Cave Mud Sediments in Food Preference, Growth and Mortality of the Troglobitic Amphipod Crustacean Crangonyx antennatus Packard (Crangonyctidae). Crustaceana 1979, 36, 129–140. [Google Scholar] [CrossRef]
- Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments, 1st ed.; Springer Science: Berlin/Heidelberg, Germany, 2009; pp. 1–527. [Google Scholar]
- Di Lorenzo, T.; Di Cicco, M.; Di Censo, D.; Galante, A.; Boscaro, F.; Messana, G.; Galassi, D.M.P. Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environ. Pollut. 2019, 255, 113189. [Google Scholar] [CrossRef] [PubMed]
- Sarvala, J. A parthenogenetic life cycle in a population of Canthocamptus staphylinus (Copepoda, Harpacticoida). Hydrobiologia 1979, 62, 113–129. [Google Scholar] [CrossRef]
- Rouch, R. Sur l’ecologie des eaux souterraines dans la karst. Stygologia 1986, 2, 352–398. [Google Scholar]
- Glatzel, T. On the biology of Parastenocaris phyllura Kiefer (Copepoda, Harpacticoida). Stygologia 1990, 5, 131–136. [Google Scholar]
- Di Lorenzo, T.; Cifoni, M.; Baratti, M.; Pieraccini, G.; Di Marzio, W.D.; Galassi, D.M.P. Four scenarios of environmental risk of diclofenac in European groundwater ecosystems. Environ. Pollut. 2021, 287, 117315. [Google Scholar] [CrossRef]
- Suárez-Morales, E. Class Maxillopoda. In Thorp and Covich’s Freshwater Invertebrates, 1st ed.; Thorp, H., Covich, A.P., Eds.; Academic Press: New York, NY, USA, 2015; pp. 709–755. [Google Scholar]
- Elgmork, K.; Eie, J.A. Two-and three-year life cycles in the planktonic copepod Cyclops scutifer in two high mountain lakes. Ecography 1989, 12, 60–69. [Google Scholar] [CrossRef]
- Van den Bosch, F.; Santer, B. Cannibalism in Cyclops abyssorum. Oikos 1993, 67, 19–28. [Google Scholar] [CrossRef]
- Glatzel, T.; Schminke, H.K. Mating behaviour of the groundwater copepod Parastenocaris phyllura Kiefer, 1938 (Copepoda: Harpacticoida). Bijdr. Dierkd. 1996, 66, 103–108. [Google Scholar] [CrossRef]
- Reid, J.W.; Williamson, C.E. Copepoda. In Ecology and Classification of North American Freshwater Invertebrates, 2nd ed.; Thorp, H., Covich, A.P., Eds.; Academic Press: New York, NY, USA, 2010; pp. 829–899. [Google Scholar]
- Ikeda, T. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 1985, 85, 1–11. [Google Scholar] [CrossRef]
- Ikeda, T.; Kanno, Y.; Ozaki, K.; Shinada, A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 2001, 139, 587–596. [Google Scholar] [CrossRef]
- Hervant, F.; Mathieu, J.; Barré, H.; Simon, K.; Pinon, C. Comparative study on the behavioral, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 1997, 118, 1277–1283. [Google Scholar] [CrossRef]
- Wilhelm, F.M.; Taylor, S.J.; Adams, G.L. Comparison of routine metabolic rates of the stygobite, Gammarus acherondytes (Amphipoda: Gammaridae) and the stygophile, Gammarus troglophilus. Freshw. Biol. 2006, 51, 1162–1174. [Google Scholar] [CrossRef]
- Scheffler, M.L.; Barreto, F.S.; Mueller, C.A. Rapid metabolic compensation in response to temperature change in the intertidal copepod, Tigriopus californicus. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 2019, 230, 131–137. [Google Scholar] [CrossRef]
- Olkova, A. Intraspecific sensitivity to toxicants—A methodological problem of bioassay. J. Ecol. Eng. 2021, 22, 113–122. [Google Scholar] [CrossRef]
- Culver, D.C.; Poulson, T.L. Oxygen consumption and activity in closely related amphipod populations from cave and surface habitats. Am. Midl. Nat. 1971, 85, 74–84. [Google Scholar] [CrossRef]
- Hervant, F.; Mathieu, J.; Messana, G. Oxygen consumption and ventilation in declining oxygen tension and posthypoxic recovery in epigean and hypogean crustaceans. J. Crustac. Biol. 1998, 18, 717–727. [Google Scholar] [CrossRef]
- Beasley-Hall, P.G.; Bertozzi, T.; Bradford, T.M.; Foster, C.S.P.; Jones, K.; Tierney, S.M.; Humphreys, W.F.; Austin, A.D.; Cooper, S.J.B. Differential transcriptomic responses to heat stress in surface and subterranean diving beetles. Sci. Rep. 2022, 12, 16194. [Google Scholar] [CrossRef]
- Wilson, R.; Franklin, C.; Davison, W.; Kraft, P. Stenotherms at sub-zero temperatures: Thermal dependence of swimming performance in Antarctic fish. J. Comp. Physiol. 2001, 171, 263–269. [Google Scholar] [CrossRef]
- Clarke, A.; Johnston, N.M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 1999, 68, 893–905. [Google Scholar] [CrossRef]
- Peck, L.S.; Conway, L.Z. The myth of metabolic cold adaptation: Oxygen consumption in stenothermal Antarctic bivalves. Geol. Soc. Spec. Publ. 2000, 177, 441–450. [Google Scholar] [CrossRef]
- Issartel, J.; Voituron, Y.; Hervant, F. Impact of temperature on the survival, the activity and the metabolism of the cave-dwelling Niphargus virei, the ubiquitous stygobiotic N. rhenorhodanensis and the surface-dwelling Gammarus fossarum (Crustacea, Amphipoda). Subterr. Bio. 2007, 5, 9–14. [Google Scholar]
- Tanaka, K.; Udagawa, T. Cold adaptation of the terrestrial isopod, Porcellio scaber, to subnivean environments. J. Comp. Physiol. 1993, 163, 439–444. [Google Scholar]
- Paul, R.J.; Zeis, B.; Lamkemeyer, T.; Seidl, M.; Pirow, R. Control of oxygen transport in the microcrustacean Daphnia: Regulation of haemoglobin expression as central mechanism of adaptation to different oxygen and temperature conditions. Acta Physiol. Scand. 2004, 182, 259–275. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Somero, G.N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution, 1st ed.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
N | T | μ | sd | Min | Max |
---|---|---|---|---|---|
10 | 8.0 | 913 | 701 | 140 | 1789 |
21 | 9.5 | 1388 | 202 | 1068 | 1914 |
8 | 11.0 | 1989 | 1214 | 104 | 3779 |
15 | 12.5 | 1941 | 1287 | 208 | 4286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, T.; Galassi, D.M.P.; Tabilio Di Camillo, A.; Pop, M.M.; Iepure, S.; Piccini, L. Life-History Traits and Acclimation Ability of a Copepod Species from the Dripping Waters of the Corchia Cave (Apuan Alps, Tuscany, Italy). Water 2023, 15, 1356. https://doi.org/10.3390/w15071356
Di Lorenzo T, Galassi DMP, Tabilio Di Camillo A, Pop MM, Iepure S, Piccini L. Life-History Traits and Acclimation Ability of a Copepod Species from the Dripping Waters of the Corchia Cave (Apuan Alps, Tuscany, Italy). Water. 2023; 15(7):1356. https://doi.org/10.3390/w15071356
Chicago/Turabian StyleDi Lorenzo, Tiziana, Diana Maria Paola Galassi, Agostina Tabilio Di Camillo, Maria Mirabela Pop, Sanda Iepure, and Leonardo Piccini. 2023. "Life-History Traits and Acclimation Ability of a Copepod Species from the Dripping Waters of the Corchia Cave (Apuan Alps, Tuscany, Italy)" Water 15, no. 7: 1356. https://doi.org/10.3390/w15071356
APA StyleDi Lorenzo, T., Galassi, D. M. P., Tabilio Di Camillo, A., Pop, M. M., Iepure, S., & Piccini, L. (2023). Life-History Traits and Acclimation Ability of a Copepod Species from the Dripping Waters of the Corchia Cave (Apuan Alps, Tuscany, Italy). Water, 15(7), 1356. https://doi.org/10.3390/w15071356