# Estimation of the Peak over Threshold-Based Design Rainfall and Its Spatial Variability in the Upper Vistula River Basin, Poland

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area and Data

#### 2.2. Research Methods

#### 2.3. The POT-Based Estimation

#### 2.3.1. Selection of the POT Sample

#### 2.3.2. Testing the Independence, Randomness, and Homogeneity

#### 2.3.3. Testing the Goodness of Fit to the GPD Distribution

#### 2.3.4. Estimating the Design Rainfall Depth

#### 2.4. The AM-Based Estimation

#### 2.4.1. Testing the Homogeneity of AM

#### 2.4.2. Parameter Estimation and Verification of the Type of the Distribution

#### 2.4.3. Selection of the Best Distribution of the AM and Estimation of Design Rainfall Depths

#### 2.5. Selection of a Better Method from the POT-Based and AM-Based Methods

#### 2.6. Estimation of the Design Rainfalls for Long Return Periods and Their Confidence Intervals

#### 2.7. Associations between Distribution Characteristics and the Station’s Altitude

## 3. Results

#### 3.1. POT-Based Method

#### 3.1.1. Selection of the POT Sample and Estimation of the GPD Parameters

#### 3.1.2. Testing of Homogeneity, Independence, and Randomness

#### 3.1.3. The Anderson–Darling Test of Goodness of Fit

#### 3.1.4. The Design Rainfall Depth and Its Confidence Interval

#### 3.2. AM-Based Method

#### 3.2.1. Selection AM Sample and Testing the Homogeneity

#### 3.2.2. Verification of the Type of the Distribution

#### 3.2.3. Selection of the Best Distribution of the AM by Using the AIC Criterion

#### 3.3. Selection of a Better Method from the POT and AM Based on the Comparison between Rainfall Depths Derived from the POT and AM Series

#### 3.4. Associations between Distribution Characteristics and Station’s Altitude

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol.
**2019**, 135, 773–787. [Google Scholar] [CrossRef] [Green Version] - Licznar, P.; Zaleski, J.; Burszta-Adamiak, E.; Gajda, W.; Jurczyk, A.; Lewandowski, R.; Mańczak, P.; Mikołajewski, K.; Oktawiec, M.; Ośródka, K.; et al. Metodyka Opracowania Polskiego Atlasu Natężeń Deszczów (PANDa); Seria Publikacji Naukowo-Badawczych—Instytut Meteorologii i Gospodarki Wodnej; Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy: Warszawa, Poland, 2020. [Google Scholar]
- Burszta-Adamiak, E.; Licznar, P.; Zaleski, J. Criteria for identifying maximum rainfall determined by the peaks-over-threshold (POT) method under the Polish Atlas of Rainfall Intensities (PANDa) project. Meteorol. Hydrol. Water Manag.
**2019**, 7, 3–13. [Google Scholar] [CrossRef] - Kozubowski, T.; Panorska, A.; Qeadan, F.; Gershunov, A.; Rominger, D. Testing Exponentiality Versus Pareto Distribution via Likelihood Ratio. Commun. Stat.-Simul. C.
**2009**, 38, 118–139. [Google Scholar] [CrossRef] - Rutkowska, A.; Banasik, K. The shape parameter of the GEV and GP distributions of annual maxima and peak over threshold discharges—Statistical analysis. Science
**2014**, z. XX, 95–104. [Google Scholar] - Bogdanowicz, E.; Stachỳ, J. Maksymalne opady deszczu w Polsce: Charakterystyki projektowe. In Materiały Badawcze—Instytut Meteorologii i Gospodarki Wodnej: Hydrologia i Oceanologia; Instytut Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 1998; Volume 23. [Google Scholar]
- Bogdanowicz, E.; Stachý, J. Maximum rainfall in Poland—A design approach. IAHS-AISH P.
**2002**, 271, 15–18. [Google Scholar] - Bisaga, W.; Bryła, M.; Kaźmierczak, B.; Kielar, R.; Kitowski, M.; Marosz, M.; Miętek, B.; Tokarczyk, T.; Walczykiewicz, T.; Żelazny, M.; et al. Modele Probabilistyczne Opadów Maksymalnych o Określonym Czasie Trwania i Prawdopodobieństwie Przewyższenia—Projekt PMAXTP; IMGW-PIB: Warszawa, Poland, 2022. [Google Scholar]
- Licznar, P.; Kotowski, A.; Siekanowicz-Grochowina, K.; Oktawiec, M.; Burszta-Adamiak, E. Empirical verification of Bogdanowicz-Stachý’s formula for design rainfall intensity calculations. Ochr. Sr.
**2018**, 40, 21–28. [Google Scholar] - Lang, M.; Ouarda, T.; Bobée, B. Towards operational guidelines for over-threshold modeling. J. Hydrol.
**1999**, 225, 103–117. [Google Scholar] [CrossRef] - Rutkowska, A.; Willems, P.; Niedzielski, T. Relation between design floods based on daily maxima and daily means: Use of the Peak over Threshold approach in the Upper Nysa Kłodzka Basin (SW Poland). Geomat. Nat. Hazards Risk
**2017**, 8, 585–606. [Google Scholar] [CrossRef] [Green Version] - Pickands, J. Statistical Inference Using Extreme Order Statistics. Ann. Stat.
**1975**, 3, 119–131. [Google Scholar] [CrossRef] - Castillo, E.; Hadi, A.S. Fitting the Generalized Pareto Distribution to Data. J. Am. Stat. Assoc.
**1997**, 92, 1609–1620. [Google Scholar] [CrossRef] - Madsen, H.; Rosbjerg, D.; Harremoës, P. Application of the Partial Duration Series Approach in the Analysis of Extreme Rainfalls. In Proceedings of the International Yokohama Symposium, Yokohama, Japan, 20–23 July 1993; Kundzewicz, Z., Rosbjerg, D., Simonovic, S., Takuchi, K., Eds.; IAHS Press: Wallingford, UK, 1993; Volume 213, pp. 257–266. [Google Scholar]
- Madsen, H.; Pearson, C.P.; Rosbjerg, D. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 2. Regional modeling. Water Resour. Res.
**1997**, 33, 759–769. [Google Scholar] [CrossRef] - Madsen, H.; Rasmussen, P.F.; Rosbjerg, D. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resour. Res.
**1997**, 33, 747–757. [Google Scholar] [CrossRef] - Montfort, M.A.J.V.; Witter, J.V. The Generalized Pareto distribution applied to rainfall depths. Hydrol. Sci. J.
**1986**, 31, 151–162. [Google Scholar] [CrossRef] - Madsen, H.; Rosbjerg, D. Generalized least squares and empirical bayes estimation in regional partial duration series index-flood modeling. Water Resour. Res.
**1997**, 33, 771–781. [Google Scholar] [CrossRef] - Martins, A.L.A.; Liska, G.R.; Beijo, L.A.; de Menezes, F.S.; Cirillo, M.A. Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil. SN Appl. Sci.
**2020**, 2, 1479. [Google Scholar] [CrossRef] - Singirankabo, E.; Iyamuremye, E. Modelling extreme rainfall events in Kigali city using generalized Pareto distribution. Meteorol. Appl.
**2022**, 29, e2076. [Google Scholar] [CrossRef] - Martins, E.S.; Stedinger, J.R. Generalized Maximum Likelihood Pareto-Poisson estimators for partial duration series. Water Resour. Res.
**2001**, 37, 2551–2557. [Google Scholar] [CrossRef] [Green Version] - Willems, P.; Guillou, A.; Beirlant, J. Bias correction in hydrologic GPD based extreme value analysis by means of a slowly varying function. J. Hydrol.
**2007**, 338, 221–236. [Google Scholar] [CrossRef] - Hill, B.M. A Simple General Approach to Inference About the Tail of a Distribution. Ann. Stat.
**1975**, 3, 1163–1174. [Google Scholar] [CrossRef] - Beirlant, J.; Teugels, J.L.; Vynckier, P. Practical Analysis of Extreme Values; Leuven University Press: Leuven, Belgium, 1996; p. 170. [Google Scholar]
- Boniphace, E.R.; Willems, P. Impact of dependence in river flow data on flood frequency analysis based on regression in quantile plots: Analysis and solutions. Water Resour. Res.
**2011**, 47, 1–62. [Google Scholar] [CrossRef] [Green Version] - Onyutha, C.; Willems, P. Uncertainty in calibrating generalised Pareto distribution to rainfall extremes in Lake Victoria basin. Hydrol. Res.
**2014**, 46, 356–376. [Google Scholar] [CrossRef] - Taye, M.T.; Willems, P. Influence of climate variability on representative QDF predictions of the upper Blue Nile basin. J. Hydrol.
**2011**, 411, 355–365. [Google Scholar] [CrossRef] - Langousis, A.; Mamalakis, A.; Puliga, M.; Deidda, R. Threshold detection for the generalized Pareto distribution: Review of representative methods and application to the NOAA NCDC daily rainfall database. Water Resour. Res.
**2016**, 52, 2659–2681. [Google Scholar] [CrossRef] [Green Version] - Niedźwiedź, T.; Obrȩbska-Starklowa, B. Klimat. In Dorzecze górnej Wisły, cz. I; Dynowska, I., Maciejewski, M., Eds.; PWN: Kraków, Poland, 1991; Volume I, pp. 68–84. [Google Scholar]
- Niedźwiedź, T. Extreme precipitation events on the northern side of the Tatra Mountains. Geogr. Pol.
**2006**, 76, 15–24. [Google Scholar] - Pociask-Karteczka, J. The Upper Vistula Basin—A Geographical Overview. In Flood Risk in the Upper Vistula Basin; Kundzewicz, Z.W., Stoffel, M., Niedźwiedź, T., Wyżga, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 3–21. [Google Scholar] [CrossRef]
- Młyński, D.; Cebulska, M.; Wałęga, A. Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere
**2018**, 9, 313. [Google Scholar] [CrossRef] [Green Version] - Dynowska, I.; Maciejewski, M. Dorzecze górnej Wisły: Opracowanie Zbiorowe; PWN: Kraków, Poland, 1991; Number t. 1. (In Polish) [Google Scholar]
- Kundzewicz, Z.; Stoffel, M.; Niedźwiedź, T.; Wyżga, B. Flood Risk in the Upper Vistula Basin; GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Majewski, W. General characteristics of the Vistula and its basin. Acta Energetica
**2013**, 2, 6–15. [Google Scholar] [CrossRef] - Soja, R. Hydrological Aspects of Anthropopression in the Polish Carpathians; Prace Geograficzne—Polska Akademia Nauk, PAN IG i PZ: Warszawa, Poland, 2002; pp. 1–135. [Google Scholar]
- Cebulska, M.; Szczepanek, R.; Twardosz, R.; i Gospodarki Przestrzennej, U.J.I.G. The Spatial Distribution of Precipitation in the Upper Vistula River Basin: Average Annual Precipitation (1952–1981); T. Kościuszko Cracow University of Technology, Faculty of Environmental Engineering: Kraków, Poland, 2013; p. 83. [Google Scholar]
- IMGW. Dane Publiczne. 2022. Available online: https://danepubliczne.imgw.pl/ (accessed on 29 July 2022).
- Ferguson, T.S.; Genest, C.; Hallin, M. Kendall’s Tau for Serial Dependence. Can. J. Stat.
**2000**, 28, 587–604. [Google Scholar] [CrossRef] - Beirlant, J.; Dierckx, G.; Goegebeur, Y.; Matthys, G. Tail Index Estimation and an Exponential Regression Model. Extremes
**1999**, 2, 177–200. [Google Scholar] [CrossRef] - Willems, P. Hydrological applications of extreme value analysis. In Hydrology in a Changing Environment; Wheater, H., Kirby, C., Eds.; John Wiley: Chichester, UK, 1998; Volume 3, pp. 15–25. [Google Scholar]
- Cunnane, C. A note on the Poisson assumption in partial duration series models. Water Resour. Res.
**1979**, 15, 489–494. [Google Scholar] [CrossRef] - Perry, J.N.; Mead, R. On the Power of the Index of Dispersion Test to Detect Spatial Pattern. Biometrics
**1979**, 35, 613–622. [Google Scholar] [CrossRef] - Kendall, M. A New Measure of Rank Correlation. Biometrika
**1938**, 30, 81–93. [Google Scholar] [CrossRef] - Mann, H.B. Nonparametric Tests Against Trend. Econometrica
**1945**, 13, 245–259. [Google Scholar] [CrossRef] - Anderson, T.W.; Darling, D.A. Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes. Ann. Math. Stat.
**1952**, 23, 193–212. [Google Scholar] [CrossRef] - Sinclair, C.; Spurr, B.; Ahmad, M. Modified anderson darling test. Commun. Stat. Theory
**1990**, 19, 3677–3686. [Google Scholar] [CrossRef] - Laio, F. Cramer von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resour. Res.
**2004**, 40, 1–10. [Google Scholar] [CrossRef] - Stephens, M.A. Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters. Ann. Stat.
**1976**, 4, 357–369. [Google Scholar] [CrossRef] - Maity, R. Statistical Methods in Hydrology and Hydroclimatology; Springer Nature: Singapore, 2018; p. 444. [Google Scholar]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteor. Soc.
**1955**, 81, 158–171. [Google Scholar] [CrossRef] - Papalexiou, S.M.; Koutsoyiannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res.
**2013**, 49, 187–201. [Google Scholar] [CrossRef] - Akaike, H.; Petrov, B.N.; Csaki, F. Information Theory and an Extension of the Maximum Likelihood Principle. In Proceedings of the 2nd International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Laio, F.; Di Baldassarre, G.; Montanari, A. Model selection techniques for the frequency analysis of hydrological extremes. Water Resour. Res.
**2009**, 45, 1–11. [Google Scholar] [CrossRef] - R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Młyński, D.; Wałęga, A.; Petroselli, A.; Tauro, F.; Cebulska, M. Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere
**2019**, 10, 43. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The location of the stations used in the study. 1. Raków, 2. Sandomierz, 3. Brynica, 4. Wolbrom, 5. Chrzanów, 6. Tarnów, 7. Pilzno, 8. Rzeszów-Jasionka, 9. Skoczów, 10. Stróża, 11. Nowy Sącz, 12. Ochotnica Górna, 13. Lesko, 14. Wisłok Wielki, 15. Kasprowy Wierch, 16. Cisna.

**Figure 2.**Flow diagram that visualizes the consecutive steps in the POT-based estimation (the left branch) and in the AM-based estimation (the right branch).

**Figure 7.**Design rainfall depth computed using the POT-based and AM-based methods. The circles represent the sample values, while the continuous lines are theoretical distributions: GPD (blue line, POT-based method) and the theoretical distribution that was selected by using the AIC (red line, AM-based method).

**Figure 8.**The scatterplot showing the relation between the station’s altitude and design rainfall depth for return periods of 100, 150, and 200 years. (

**a**) With the Kasprowy Wierch station (marked in red) (

**b**) Without the Kasprowy Wierch station. The blue or green area represents the confidence region around the regression line and its upper and lower bands are confidence limits of the predicted rainfall depths at the confidence level of $95\%$.

**Figure 9.**The scatterplot showing the relation between the station’s altitude and variance of the GPD. (

**a**) Including the Kasprowy Wierch station marked in red. (

**b**) Without the Kasprowy Wierch station. The blue or green area represents the confidence region around the regression line and its upper and lower bands are confidence limits of the predicted variance of rainfall depth at the confidence level of $95\%$.

No. | Station | Longitude | Latitude | Altitude [m. a.s.l.] | Mean dp ${}^{\left(1\right)}$ [mm] | Mean AM ${}^{\left(2\right)}$ [mm] |
---|---|---|---|---|---|---|

1 | Raków | 21${}^{\circ}$03′00″ | 50${}^{\circ}$41′00″ | 220 | 1.63 | 36.14 |

2 | Sandomierz | 21${}^{\circ}$42′57″ | 50${}^{\circ}$41′48″ | 217 | 1.55 | 38.44 |

3 | Brynica | 19${}^{\circ}$00′00″ | 50${}^{\circ}$28′00″ | 285 | 2.03 | 41.53 |

4 | Wolbrom | 19${}^{\circ}$45′00″ | 50${}^{\circ}$23′00″ | 370 | 2.06 | 43.03 |

5 | Chrzanów | 19${}^{\circ}$23′00″ | 50${}^{\circ}$09′00″ | 295 | 2.10 | 42.60 |

6 | Tarnów | 20${}^{\circ}$59′04″ | 50${}^{\circ}$01′48″ | 209 | 1.97 | 49.71 |

7 | Pilzno | 21${}^{\circ}$18′00″ | 49${}^{\circ}$59′00″ | 210 | 1.98 | 46.64 |

8 | Rzeszów-Jasionka | 22${}^{\circ}$02′32″ | 50${}^{\circ}$06′39″ | 200 | 1.76 | 37.79 |

9 | Skoczów | 18${}^{\circ}$47′42″ | 49${}^{\circ}$47′56″ | 295 | 2.59 | 53.84 |

10 | Stróża | 19${}^{\circ}$56′00″ | 49${}^{\circ}$48′00″ | 307 | 2.54 | 51.37 |

11 | Nowy Sącz | 20${}^{\circ}$41′21″ | 49${}^{\circ}$37′38″ | 292 | 2.01 | 45.14 |

12 | Ochotnica Górna | 20${}^{\circ}$14′00″ | 49${}^{\circ}$32′00″ | 620 | 2.32 | 50.48 |

13 | Lesko | 22${}^{\circ}$20′30″ | 49${}^{\circ}$27′59″ | 420 | 2.24 | 42.96 |

14 | Wisłok Wielki | 21${}^{\circ}$59′57″ | 49${}^{\circ}$22′44″ | 550 | 2.64 | 49.95 |

15 | Kasprowy Wierch | 19${}^{\circ}$58′55″ | 49${}^{\circ}$13′57″ | 1991 | 4.89 | 83.01 |

16 | Cisna | 22${}^{\circ}$20′00″ | 49${}^{\circ}$13′00″ | 540 | 2.98 | 52.47 |

^{(1)}Daily precipitation

^{(2)}Annual maximum.

**Table 2.**The values of the ${x}_{t}$, $\widehat{\gamma}$, and $\widehat{\sigma}$ parameters for each station.

Station | ${\mathit{x}}_{\mathit{t}}$ | $\widehat{\mathit{\gamma}}$ | $\widehat{\mathit{\sigma}}$ | Distribution |
---|---|---|---|---|

1. Raków | 27.5 | 0.27 | 7.39 | GPD |

2. Sandomierz | 23.0 | 0.30 | 6.83 | GPD |

3. Brynica | 25.9 | 0.29 | 7.53 | GPD |

4. Wolbrom | 31.3 | 0.27 | 8.31 | GPD |

5. Chrzanów | 27.5 | 0.00 | 10.96 | EXP |

6. Tarnów | 28.0 | 0.00 | 14.85 | EXP |

7. Pilzno | 28.8 | 0.00 | 13.30 | EXP |

8. Rzeszów-Jasionka | 27.2 | 0.00 | 9.82 | EXP |

9. Skoczów | 38.5 | 0.28 | 10.96 | GPD |

10. Stróża | 32.0 | 0.31 | 9.92 | GPD |

11. Nowy Sącz | 32.0 | 0.00 | 10.94 | EXP |

12. Ochotnica Górna | 27.5 | 0.30 | 8.24 | GPD |

13. Lesko | 38.1 | 0.18 | 6.92 | GPD |

14. Wisłok Wielki | 34.7 | 0.25 | 8.83 | GPD |

15. Kasprowy Wierch | 52.3 | 0.30 | 16.62 | GPD |

16. Cisna | 42.1 | 0.20 | 8.60 | GPD |

**Table 3.**The p-values of the test of the Kendall’s $\tau $ (column 2), the MK test (column 3), and the ADU test statistics and the critical values ADU${}_{\mathrm{crit}}$ (column 4).

Station | Kendall’s $\mathit{\tau}$ p-Value (lag = 1) | MK p-Value | ADU / ADU${}_{\mathbf{crit}}$ |
---|---|---|---|

1. Raków | 0.282 | 0.960 | 0.50/1.31 |

2. Sandomierz | 0.438 | 0.359 | 0.25/1.27 |

3. Brynica | 0.240 | 0.694 | 0.61/1.30 |

4. Wolbrom | 0.520 | 0.247 | 0.26/1.33 |

5. Chrzanów | 1.000 | 0.816 | 0.15/1.30 |

6. Tarnów | 0.425 | 0.887 | 0.10/1.30 |

7. Pilzno | 0.430 | 0.839 | 0.29/1.32 |

8. Rzeszów-Jasionka | 0.495 | 0.332 | 0.31/1.26 |

9. Skoczów | 0.054 | 0.578 | 0.27/1.30 |

10. Stróża | 0.505 | 0.218 | 0.11/1.34 |

11. Nowy Sącz | 0.179 | 0.374 | 0.14/1.31 |

12. Ochotnica Górna | 0.969 | 0.904 | 0.23/1.29 |

13. Lesko | 0.710 | 0.383 | 0.14/1.25 |

14. Wisłok Wielki | 0.332 | 0.054 | 0.19/1.35 |

15. Kasprowy Wierch | 0.715 | 0.185 | 0.27/1.31 |

16. Cisna | 0.744 | 0.121 | 0.20/1.32 |

**Table 4.**The design rainfall depths of return period T = 100 years and T = 200 years, and its $95\%$ confidence intervals.

Station | ${\mathit{P}}_{\mathit{T}=100}$ | ${\mathit{CI}}_{{\mathit{P}}_{\mathit{T}=100}}$ | ${\mathit{P}}_{\mathit{T}=200}$ | ${\mathit{CI}}_{{\mathit{P}}_{\mathit{T}=200}}$ |
---|---|---|---|---|

1. Raków | 106.36 | (82.06; 142.38) | 128.14 | (95.39; 178.56) |

2. Sandomierz | 120.95 | (94.31; 158.27) | 148.57 | (112.33; 201.01) |

3. Brynica | 132.41 | (104.02; 172.61) | 161.98 | (123.52; 218.19) |

4. Wolbrom | 124.62 | (97.63; 163.78) | 149.82 | (113.61; 204.19) |

5. Chrzanów | 88.54 | (79.27; 99.05) | 96.14 | (85.72; 107.09) |

6. Tarnów | 111.14 | (99.05; 124.66) | 121.44 | (107.85; 136.63) |

7. Pilzno | 101.50 | (89.94; 113.98) | 110.72 | (97.70; 124.78) |

8. Rzeszów-Jasionka | 79.85 | (71.22; 89.45) | 86.65 | (76.91; 97.49) |

9. Skoczów | 171.88 | (131.77; 228.23) | 209.37 | (154.99; 288.61) |

10. Stróża | 179.30 | (138.73; 238.47) | 222.26 | (166.57; 306.31) |

11. Nowy Sącz | 91.27 | (81.81; 101.73) | 98.86 | (88.19; 110.65) |

12. Ochotnica Górna | 159.67 | (127.07; 203.82) | 196.51 | (152.23; 258.19) |

13. Lesko | 91.34 | (75.56; 113.02) | 103.60 | (83.38; 132.17) |

14. Wisłok Wielki | 140.18 | (112.20; 176.44 | 167.22 | (130.12; 216.68) |

15. Kasprowy Wierch | 271.52 | (211.75; 358.95) | 333.97 | (252.44; 457.28) |

16. Cisna | 119.74 | (98.44; 147.69) | 137.96 | (110.45; 175.07) |

**Table 5.**The AIC values for the GEV, GA2, GA3, LOG, WE2, WE3, and GUM distributions. The lowest AIC values (in boxes) show the distribution functions that provide the best fit.

Station | GEV | GA2 | GA3 | LOG | WE2 | WE3 | GUM |
---|---|---|---|---|---|---|---|

1. Raków | 483.79 | 493.34 | 470.83 | 486.68 | 510.92 | 479.29 | 486.86 |

2. Sandomierz | 496.87 | 507.19 | 488.86 | 498.82 | 527.11 | 503.14 | 499.39 |

3. Brynica | 499.35 | 501.98 | 500.70 | 498.12 | 518.05 | 503.40 | 497.84 |

4. Wolbrom | 509.04 | 508.94 | 508.90 | 507.14 | 517.54 | 509.70 | 507.13 |

5. Chrzanów | 504.91 | 503.50 | 504.31 | 502.73 | 509.68 | 504.82 | 502.93 |

6. Tarnów | 533.53 | 531.91 | 533.07 | 531.44 | 538.21 | 533.43 | 531.55 |

7. Pilzno | 507.91 | 508.10 | 506.97 | 506.16 | 517.38 | 507.62 | 506.02 |

8. Rzeszów-Jasionka | 483.19 | 481.69 | 483.48 | 481.67 | 487.11 | 485.27 | 481.66 |

9. Skoczów | 541.56 | 544.23 | 542.15 | 540.52 | 555.86 | 544.30 | 540.66 |

10. Stróża | 535.30 | 545.45 | 537.62 | 538.10 | 561.31 | 540.89 | 538.87 |

11. Nowy Sącz | 494.12 | 494.73 | 491.73 | 492.74 | 504.25 | 490.52 | 492.26 |

12. Ochotnica Górna | 525.93 | 540.82 | 532.97 | 531.81 | 558.98 | 539.42 | 531.65 |

13. Lesko | 467.97 | 469.10 | 466.80 | 467.08 | 481.15 | 467.06 | 466.00 |

14. Wisłok Wielki | ne * | ne | ne | ne | ne | ne | ne |

15. Kasprowy Wierch | 602.26 | 605.08 | 576.67 | 601.08 | 616.41 | 601.40 | 602.18 |

16. Cisna | 501.26 | 504.43 | 499.48 | 501.58 | 517.20 | 499.54 | 499.92 |

**Table 6.**The scores ${d}_{1},{d}_{2}$ assigned to the stations based on the comparison between the $\mathit{MDE}$ and $\mathit{RMSE}$ from the POT and AM methods. The number 1 shows a better fit. The final score d is shown under the table.

Case 1 | Case 2 | |||||||
---|---|---|---|---|---|---|---|---|

Station | ${\mathrm{MDE}}_{\mathrm{POT}}$ | ${\mathrm{MDE}}_{\mathrm{AM}}$ | ${\mathrm{RMSE}}_{\mathrm{POT}}$ | ${\mathrm{RMSE}}_{\mathrm{AM}}$ | ${\mathrm{MDE}}_{\mathrm{POT}}$ | ${\mathrm{MDE}}_{\mathrm{AM}}$ | ${\mathrm{RMSE}}_{\mathrm{POT}}$ | ${\mathrm{RMSE}}_{\mathrm{AM}}$ |

1. Raków | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

2. Sandomierz | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

3. Brynica | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |

4. Wolbrom | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |

5. Chrzanów | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

6. Tarnów | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

7. Pilzno | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

8. Rzeszów-J. | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

9. Skoczów | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

10. Stróża | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

11. Nowy Sącz | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

12. Ochotnica G. | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

13. Lesko | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

14. Wisłok Wielki | - | - | - | - | - | - | 0 | - |

15. Kasprowy W. | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

16. Cisna | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |

d${}_{\mathrm{POT}}$ = 25 | d${}_{\mathrm{AM}}$ = 5 | d${}_{\mathrm{POT}}$ = 25 | d${}_{\mathrm{AM}}$ = 5 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kołodziejczyk, K.; Rutkowska, A.
Estimation of the Peak over Threshold-Based Design Rainfall and Its Spatial Variability in the Upper Vistula River Basin, Poland. *Water* **2023**, *15*, 1316.
https://doi.org/10.3390/w15071316

**AMA Style**

Kołodziejczyk K, Rutkowska A.
Estimation of the Peak over Threshold-Based Design Rainfall and Its Spatial Variability in the Upper Vistula River Basin, Poland. *Water*. 2023; 15(7):1316.
https://doi.org/10.3390/w15071316

**Chicago/Turabian Style**

Kołodziejczyk, Katarzyna, and Agnieszka Rutkowska.
2023. "Estimation of the Peak over Threshold-Based Design Rainfall and Its Spatial Variability in the Upper Vistula River Basin, Poland" *Water* 15, no. 7: 1316.
https://doi.org/10.3390/w15071316