Marine Hazard Assessment of Soluble and Nanostructured Forms of the Booster Biocide DCOIT in Tropical Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds
2.2. Nanomaterial Characterization
Morphological and Structural Characterization
2.3. Environmental Behavior and Ecotoxicity Assessment
2.3.1. Preparation of Solutions/Dispersions in Natural Seawater
2.3.2. Environmental Behavior of Nanomaterials in Natural Seawater
2.3.3. Marine Ecotoxicity
Antibacterial and Antifungal Activity
Microalgae Growth Inhibition Toxicity Tests
Long-Term Chronic Toxicity Tests Using Crustaceans
Short-Term Chronic Toxicity Tests Using Echinoderms
Statistical Analyses
2.4. Hazard Assessment
3. Results
3.1. Nanomaterials Characterization and Environmental Behavior
3.2. Ecotoxicity Assessment
3.3. Hazard Assessment
4. Discussion
4.1. Nanomaterials Characterization and Environmental Behavior
4.2. Ecotoxicity Assessment
4.3. Hazard Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flemming, H.C. Biofouling and me: My Stockholm Syndrome with Biofilms. Water Res. 2020, 173, 115576. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.M.; Islam, H.; Ferreira, T.R.S.; Guedes Soares, C. Impact of Heavy Biofouling on a Nearshore Heave-Pitch-Roll Wave Buoy Performance. Appl. Ocean Res. 2021, 107, 102500. [Google Scholar] [CrossRef]
- Hopkins, G.; Davidson, I.; Georgiades, E.; Floerl, O.; Morrisey, D.; Cahill, P. Managing Biofouling on Submerged Static Artificial Structures in the Marine Environment—Assessment of Current and Emerging Approaches. Front. Mar. Sci. 2021, 8, 759194. [Google Scholar] [CrossRef]
- Oliva, A.; Miele, M.C.; Al Ismail, D.; Di Timoteo, F.; De Angelis, M.; Rosa, L.; Cutone, A.; Venditti, M.; Mascellino, M.T.; Valenti, P.; et al. Challenges in the Microbiological Diagnosis of Implant-Associated Infections: A Summary of the Current Knowledge. Front. Microbiol. 2021, 12, 750460. [Google Scholar] [CrossRef]
- Luoma, E.; Nevalainen, L.; Altarriba, E.; Helle, I.; Lehikoinen, A. Developing a Conceptual Influence Diagram for Socio-Eco-Technical Systems Analysis of Biofouling Management in Shipping—A Baltic Sea Case Study. Mar. Pollut. Bull. 2021, 170, 112614. [Google Scholar] [CrossRef]
- Ardura, A.; Fernandez, S.; Haguenauer, A.; Planes, S.; Garcia-Vazquez, E. Ship-Driven Biopollution: How Aliens Transform the Local Ecosystem Diversity in Pacific Islands. Mar. Pollut. Bull. 2021, 166, 112251. [Google Scholar] [CrossRef]
- Svavarsson, J.; Guls, H.D.; Sham, R.C.; Leung, K.M.Y.; Halldórsson, H.P. Pollutants from Shipping—New Environmental Challenges in the Subarctic and the Arctic Ocean. Mar. Pollut. Bull. 2021, 164, 112004. [Google Scholar] [CrossRef]
- International Maritime Organization. A Strategy for the IMO Secretariat to Identify, Analyse and Address Emerging Issues and Opportunities to Further Support Member States in Their Implementation of the 2030 Agenda for Sustainable Development; IMO: London, UK, 2019; Volume 3. [Google Scholar]
- Han, T.; Ma, Z.; Wang, D. Biofouling-Inspired Growth of Superhydrophilic Coating of Polyacrylic Acid on Hydrophobic Surfaces for Excellent Anti-Fouling. ACS Macro Lett. 2021, 10, 354–358. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, Q.; Zhou, X.; Luo, X.; Su, Z.; Chen, Z.; Huang, R.; Liu, Y.; Zhang, X. How Do Environmentally Friendly Antifouling Alkaloids Affect Marine Fouling Microbial Communities? Sci. Total Environ. 2022, 820, 152910. [Google Scholar] [CrossRef]
- Huang, Z.; Ghasemi, H. Hydrophilic Polymer-Based Anti-Biofouling Coatings: Preparation, Mechanism, and Durability. Adv. Colloid Interface Sci. 2020, 284, 102264. [Google Scholar] [CrossRef]
- Uc-Peraza, R.G.; Castro, Í.B.; Fillmann, G. An Absurd Scenario in 2021: Banned TBT-Based Antifouling Products Still Available on the Market. Sci. Total Environ. 2022, 805, 150377. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.G.; Figueiredo, J.; Perina, F.; Abessa, D.M.d.S.; Loureiro, S.; Martins, R. Occurrence, Effects and Environmental Risk of Antifouling Biocides (EU PT21): Are Marine Ecosystems Threatened? Crit. Rev. Environ. Sci. Technol. 2021, 52, 3179–3210. [Google Scholar] [CrossRef]
- Gabe, H.B.; Guerreiro, A.d.S.; Sandrini, J.Z. Molecular and Biochemical Effects of the Antifouling DCOIT in the Mussel Perna perna. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108870. [Google Scholar] [CrossRef]
- Campos, B.G.d.; Fontes, M.K.; Gusso-Choueri, P.K.; Marinsek, G.P.; Nobre, C.R.; Moreno, B.B.; Abreu, F.E.L.; Fillmann, G.; de Britto Mari, R.; de Souza Abessa, D.M. A Preliminary Study on Multi-Level Biomarkers Response of the Tropical Oyster Crassostrea brasiliana to Exposure to the Antifouling Biocide DCOIT. Mar. Pollut. Bull. 2022, 174, 113241. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, F.; De Castro, I.B.; Perina, F.C.; De Souza Abessa, D.M.; De Paula Teixeira, A. Ecological Effects of Irgarol 1051 and Diuron on a Coastal Meiobenthic Community: A Laboratory Microcosm Experiment. Ecol. Indic. 2015, 58, 21–31. [Google Scholar] [CrossRef]
- Bellas, J. Comparative Toxicity of Alternative Antifouling Biocides on Embryos and Larvae of Marine Invertebrates. Sci. Total Environ. 2006, 367, 573–585. [Google Scholar] [CrossRef]
- Braithwaite, R.A.; Fletcher, R.L. The Toxicity of Irgarol 1051 and Sea-Nine 211 to the Non-Target Macroalga Fucus serratus Linnaeus, with the Aid of an Image Capture and Analysis System. J. Exp. Mar. Biol. Ecol. 2005, 322, 111–121. [Google Scholar] [CrossRef]
- Nomura, M.; Okamura, H.; Horie, Y.; Yap, C.K.; Emmanouil, C.; Uwai, S.; Kawai, H. Effects of antifouling compounds on the growth of macroalgae Undaria pinnatifida. Chemosphere 2023, 312, 137141. [Google Scholar] [CrossRef]
- Rola, R.C.; Guerreiro, A.S.; Gabe, H.; Geihs, M.A.; da Rosa, C.E.; Sandrini, J.Z. Antifouling Biocide Dichlofluanid Modulates the Antioxidant Defense System of the Brown Mussel Perna perna. Mar. Pollut. Bull. 2020, 157, 111321. [Google Scholar] [CrossRef]
- Abreu, F.E.L.; Martins, S.E.; Fillmann, G. Ecological Risk Assessment of Booster Biocides in Sediments of the Brazilian Coastal Areas. Chemosphere 2021, 276, 130155. [Google Scholar] [CrossRef]
- Uc-Peraza, R.G.; Delgado-Blas, V.H.; Osten, J.R.; Castro, Í.B.; Proietti, M.C.; Fillmann, G. Mexican Paradise under Threat: The Impact of Antifouling Biocides along the Yucatán Peninsula. J. Hazard. Mater. 2021, 427, 128162. [Google Scholar] [CrossRef]
- Koning, J.T.; Bollmann, U.E.; Bester, K. The Occurrence of Modern Organic Antifouling Biocides in Danish Marinas. Mar. Pollut. Bull. 2020, 158, 111402. [Google Scholar] [CrossRef] [PubMed]
- European Comission EC. Commission Implementing Decision (EU) 2016/107 of 27 January 2016. Not Approving Cybutryne as an Existing Active Substance for Use in Biocidal Products for Product-Type 21. Off. J. Eur. Union 2016, 16, L21/81. [Google Scholar]
- United States Environmental Protection Agency. EPA Protects Aquatic Ecosystems by Finalizing Irgarol Antifoulant Paint Cancellation; USEPA: Washington, DC, USA, 2021. [Google Scholar]
- McNeil, E.M. Antifouling: Regulation of Biocides in the UK before and after Brexit. Mar. Policy 2018, 92, 58–60. [Google Scholar] [CrossRef]
- Seo, E.; Lee, J.W.; Lee, D.; Seong, M.R.; Kim, G.H.; Hwang, D.S.; Lee, S.J. Eco-Friendly Erucamide–Polydimethylsiloxane Coatings for Marine Anti-Biofouling. Colloids Surf. B Biointerfaces 2021, 207, 112003. [Google Scholar] [CrossRef] [PubMed]
- Grant, T.M.; Rennison, D.; Cervin, G.; Pavia, H.; Hellio, C.; Foulon, V.; Brimble, M.A.; Cahill, P.; Svenson, J. Towards Eco-Friendly Marine Antifouling Biocides—Nature Inspired Tetrasubstituted 2,5-Diketopiperazines. Sci. Total Environ. 2022, 812, 152487. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.J.; Satheesh, S.; Balqadi, A.A. Antifouling Activities of Methanolic Extracts of Three Macroalgal Species from the Red Sea. J. Appl. Phycol. 2018, 30, 1943–1953. [Google Scholar] [CrossRef]
- Lamin, A.; Kaksonen, A.H.; Cole, I.S.; Chen, X.-B. Quorum Sensing Inhibitors Applications: A New Prospect for Mitigation of Microbiologically Influenced Corrosion. Bioelectrochemistry 2022, 145, 108050. [Google Scholar] [CrossRef]
- Wang, L.; Yu, L.; Lin, C. Extraction of Protease Produced by Sea Mud Bacteria and Evaluation of Antifouling Performance. J. Ocean Univ. China 2019, 18, 1139–1146. [Google Scholar] [CrossRef]
- Xu, Y.; He, H.; Schulz, S.; Liu, X.; Fusetani, N.; Xiong, H.; Xiao, X.; Qian, P.Y. Potent Antifouling Compounds Produced by Marine Streptomyces. Bioresour. Technol. 2010, 101, 1331–1336. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic Surface Coatings for Marine Antifouling: Natural Antifoulants, Synthetic Polymers and Surface Microtopography. Sci. Total Environ. 2021, 766, 144469. [Google Scholar] [CrossRef] [PubMed]
- Maia, F.; Silva, A.P.; Fernandes, S.; Cunha, A.; Almeida, A.; Tedim, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Incorporation of Biocides in Nanocapsules for Protective Coatings Used in Maritime Applications. Chem. Eng. J. 2015, 270, 150–157. [Google Scholar] [CrossRef]
- Avelelas, F.; Martins, R.; Oliveira, T.; Maia, F.; Malheiro, E.; Soares, A.M.V.M.; Loureiro, S.; Tedim, J. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species. Mar. Biotechnol. 2017, 19, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.; Oliveira, T.; Ferreira, V.; Sushkova, A.; Silva, S.; Carneiro, D.; Cardoso, D.; Gonçalves, S.; Maia, F.; Rocha, C.; et al. Toxicity of Innovative Anti-Fouling Nano-Based Solutions to Marine Species. Environ. Sci. Nano 2019, 6, 1418–1429. [Google Scholar] [CrossRef]
- Michailidis, M.; Sorzabal-Bellido, I.; Adamidou, E.A.; Diaz-Fernandez, Y.A.; Aveyard, J.; Wengier, R.; Grigoriev, D.; Raval, R.; Benayahu, Y.; D’Sa, R.A.; et al. Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS Appl. Mater. Interfaces 2017, 9, 38364–38372. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Wang, W.; Zhang, L.; Vinokurov, V.; Stavitskaya, A.; Lvov, Y. Development of Marine Antifouling Epoxy Coating Enhanced with Clay Nanotubes. Materials 2019, 12, 4195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutner-Hoch, E.; Martins, R.; Maia, F.; Oliveira, T.; Shpigel, M.; Weis, M.; Tedim, J.; Benayahu, Y. Toxicity of Engineered Micro- and Nanomaterials with Antifouling Properties to the Brine Shrimp Artemia salina and Embryonic Stages of the Sea Urchin Paracentrotus lividus. Environ. Pollut. 2019, 251, 530–537. [Google Scholar] [CrossRef]
- De Campos, B.G.; do Prado e Silva, M.B.M.; Avelelas, F.; Maia, F.; Loureiro, S.; Perina, F.; Abessa, D.M.d.S.; Martins, R. Toxicity of Innovative Antifouling Additives on an Early Life Stage of the Oyster Crassostrea gigas: Short- and Long-Term Exposure Effects. Environ. Sci. Pollut. Res. 2022, 29, 27534–27547. [Google Scholar] [CrossRef]
- Santos, J.V.N.; Martins, R.; Fontes, M.K.; Galvao, B.; Silva, M.B.M.d.P.; Maia, F.; Abessa, D.M.d.S.; Perina, F.C. Can Encapsulation of the Biocide DCOIT Affect the Anti-Fouling Efficacy and Toxicity on Tropical Bivalves ? Appl. Sci. 2020, 10, 8579. [Google Scholar] [CrossRef]
- De Jesus, P.S.; de Figueirêdo, L.P.; Maia, F.; Martins, R.; Nilin, J. Acute and Chronic Effects of Innovative Antifouling Nanostructured Biocides on a Tropical Marine Microcrustacean. Mar. Pollut. Bull. 2021, 164, 111970. [Google Scholar] [CrossRef]
- Figueiredo, J.; Loureiro, S.; Martins, R. Hazard of Novel Anti-Fouling Nanomaterials and Biocides DCOIT and Silver to Marine Organisms. Environ. Sci. Nano 2020, 7, 1670–1680. [Google Scholar] [CrossRef]
- Santos, M.C.L.; Ottoni, C.A.; de Souza, R.F.B.; da Silva, S.G.; Assumpção, M.H.M.T.; Spinacé, E.V.; Neto, A.O. Methanol Oxidation in Alkaline Medium Using PtIn/C Electrocatalysts. Electrocatalysis 2016, 7, 445–450. [Google Scholar] [CrossRef]
- Asariha, M.; Chahardoli, A.; Karimi, N.; Gholamhosseinpour, M.; Khoshroo, A.; Nemati, H.; Shokoohinia, Y.; Fattahi, A. Green Synthesis and Structural Characterization of Gold Nanoparticles from Achillea wilhelmsii Leaf Infusion and in Vitro Evaluation. Bull. Mater. Sci. 2020, 43, 57. [Google Scholar] [CrossRef]
- Chahardoli, A.; Karimi, N.; Fattahi, A. Nigella Arvensis Leaf Extract Mediated Green Synthesis of Silver Nanoparticles: Their Characteristic Properties and Biological Efficacy. Adv. Powder Technol. 2018, 29, 202–210. [Google Scholar] [CrossRef]
- Brazilian National Standards Organization. Aquatic Ecotoxicology—Chronic Toxicity—Test with Marine Microalgae; ABNT NBR 16723:2013; ABNT: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Dupraz, V.; Stachowski-Haberkorn, S.; Wicquart, J.; Tapie, N.; Budzinski, H.; Akcha, F. Demonstrating the Need for Chemical Exposure Characterisation in a Microplate Test System: Toxicity Screening of Sixteen Pesticides on Two Marine Microalgae. Chemosphere 2019, 221, 278–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Laurent, D.; Blaise, C.; Macquarrie, P.; Scroggins, R.; Trottier, B. Comparative Assessment of Herbicide Phytotoxicity to Selenastrum capricornutum Using Microplate and Flask Bioassay Procedures. Environ. Toxicol. Water Qual. 1992, 7, 35–48. [Google Scholar] [CrossRef]
- Brazilian National Standards Organization. Aquatic Ecotoxicology—Test with Marine Copepods (Copepoda, Crustacea); ABNT NBR 16723:2021; ABNT: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Brazilian National Standards Organization. Aquatic Ecotoxicology—Chronic Toxicity of Short Duration—Test Method Urchin (Echinodermata: Echinoidea); ABNT NBR 15350:2012; ABNT: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Environment Canada. Biological Test Method: Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars); EPS 1/RM/27; Minister of Supply and Services Canada: Ottawa, ON, Canada, 1992. [Google Scholar]
- Laitano, K.S.; Gonçalves, C.; Resgalla, C., Jr. Viabilidade Do Uso Da Bolacha-Do-Mar Mellita quinquiesperforata Como Organismo Teste. J. Braz. Soc. Ecotoxicol. 2008, 3, 9–14. [Google Scholar] [CrossRef]
- Mello, L.C.; Fonseca, T.G.; Abessa, D.M.d.S. Ecotoxicological Assessment of Chemotherapeutic Agents Using Toxicity Tests with Embryos of Mellita quinquiesperforata. Mar. Pollut. Bull. 2020, 159, 111493. [Google Scholar] [CrossRef]
- European Chemical Bureau. Technical Guidance Document on Risk Assessment, Part II. European Commission—Joint Research Centre, Institute for Health and Consumer Protection, European Communities; ECB: Ispra, Italy, 2003; p. 328. [Google Scholar]
- Onduka, T.; Ojima, D.; Ito, M.; Ito, K.; Mochida, K.; Fujii, K. Toxicity of the Antifouling Biocide Sea-Nine 211 to Marine Algae, Crustacea, and a Polychaete. Fish. Sci. 2013, 79, 999–1006. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database—EEDB). Environmental Fate and Effects Division, Washington, D.C.; ECOREF #344: U.S. Environmental Protection Agency; USEPA: Washington, DC, USA, 2020. Available online: https://cfpub.epa.gov/ecotox/search.cfm (accessed on 11 August 2020).
- Kobayashi, N.; Okamura, H. Effects of New Antifouling Compounds on the Development of Sea Urchin. Mar. Pollut. Bull. 2002, 44, 748–751. [Google Scholar] [CrossRef]
- Sierosławska, A.; Borówka, A.; Rymuszka, A.; Żukociński, G.; Sobczak, K. Mesoporous Silica Nanoparticles Containing Copper or Silver Synthesized with a New Metal Source: Determination of Their Structure Parameters and Cytotoxic and Irritating Effects. Toxicol. Appl. Pharmacol. 2021, 429, 115685. [Google Scholar] [CrossRef] [PubMed]
- Kaczerewska, O.; Sousa, I.; Martins, R.; Figueiredo, J.; Loureiro, S.; Tedim, J. Gemini Surfactant as a Template Agent for the Synthesis of More Eco-Friendly Silica Nanocapsules. Appl. Sci. 2020, 10, 8085. [Google Scholar] [CrossRef]
- Martins, R.; Figueiredo, J.; Sushkova, A.; Wilhelm, M.; Tedim, J.; Loureiro, S. “Smart” Nanosensors for Early Detection of Corrosion: Environmental Behavior and Effects on Marine Organisms. Environ. Pollut. 2022, 302, 118973. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, L.; Bartoli, F.; Fidanza, M.R.; Zurlo, F.; Marconi, E.; Gasperi, T.; Tuti, S.; Crociani, L.; di Bartolomeo, E.; Caneva, G.; et al. Encapsulation of Environmentally-Friendly Biocides in Silica Nanosystems for Multifunctional Coatings. Appl. Surf. Sci. 2020, 514, 145908. [Google Scholar] [CrossRef]
- Jose Chirayil, C.; Abraham, J.; Kumar Mishra, R.; George, S.C.; Thomas, S. Instrumental Techniques for the Characterization of Nanoparticles. In Thermal and Rheological Measurement Techniques for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. [Google Scholar]
- Saman, N.; Ahmad Kamal, N.A.; Lye, J.W.P.; Mat, H. Synthesis and Characterization of CTAB-Silica Nanocapsules and Its Adsorption Behavior towards Pd(II) Ions in Aqueous Solution. Adv. Powder Technol. 2020, 31, 3205–3214. [Google Scholar] [CrossRef]
- Keller, A.A.; Wang, H.; Zhou, D.; Lenihan, H.S.; Cherr, G.; Cardinale, B.J.; Miller, R.; Zhaoxia, J.I. Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environ. Sci. Technol. 2010, 44, 1962–1967. [Google Scholar] [CrossRef]
- Michailidis, M.; Gutner-Hoch, E.; Wengier, R.; Onderwater, R.; D’Sa, R.A.; Benayahu, Y.; Semenov, A.; Vinokurov, V.; Shchukin, D.G. Highly Effective Functionalized Coatings with Antibacterial and Antifouling Properties. ACS Sustain. Chem. Eng. 2020, 8, 8928–8937. [Google Scholar] [CrossRef]
- Dobretsov, S.; Al-Shibli, H.; Maharachchikumbura, S.S.N.; Al-Sadi, A.M. The Presence of Marine Filamentous Fungi on a Copper-Based Antifouling Paint. Appl. Sci. 2021, 11, 8277. [Google Scholar] [CrossRef]
- European Chemicals Agency. Regulation (EU) N°528/2012 Concerning the Making Available on the Market and Use of Biocidal Products. Evaluation of Active Substances. Assessment Report: 4,5-Dichloro-2-Octyl-2H-Isothiazol-3-One (DCOIT); ECHA: Helsinki, Finland, 2014. [Google Scholar]
- Bressy, C.; Briand, J.F.; Lafond, S.; Davy, R.; Mazeas, F.; Tanguy, B.; Martin, C.; Horatius, L.; Anton, C.; Quiniou, F.; et al. What Governs Marine Fouling Assemblages on Chemically-Active Antifouling Coatings? Prog. Org. Coat. 2022, 164, 106701. [Google Scholar] [CrossRef]
- Aidarova, S.B.; Sharipova, A.A.; Issayeva, A.B.; Mutaliyeva, B.Z.; Tleuova, A.B.; Grigoriev, D.O.; Kudasova, D.; Dzhakasheva, M.; Miller, R. Synthesis of Submicrocontainers with “Green” Biocide and Study of Their Antimicrobial Activity. Colloids Interfaces 2018, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Jia, Z.; Ouyang, X.; Wang, S. Inhibition of Algae Growth on HVDC Polymeric Insulators Using Antibiotic-Loaded Silica Aerogel Nanocomposites. Polym. Degrad. Stab. 2018, 155, 262–270. [Google Scholar] [CrossRef]
- Wendt, I.; Backhaus, T.; Blanck, H.; Arrhenius, Å. The Toxicity of the Three Antifouling Biocides DCOIT, TPBP and Medetomidine to the Marine Pelagic Copepod Acartia tonsa. Ecotoxicology 2016, 25, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, C.; Marcellini, F.; Falugi, C.; Varrella, S.; Corinaldesi, C. Early-Stage Anomalies in the Sea Urchin (Paracentrotus lividus) as Bioindicators of Multiple Stressors in the Marine Environment: Overview and Future Perspectives. Environ. Pollut. 2021, 287, 117608. [Google Scholar] [CrossRef] [PubMed]
- Buznikov, G.A.; Nikitina, L.A.; Bezuglov, V.V.; Milošević, I.; Lazarević, L.; Rogač, L.; Ruzdijić, S.; Slotkin, T.A.; Rakić, L.M. Sea Urchin Embryonic Development Provides a Model for Evaluating Therapies against β-Amyloid Toxicity. Brain Res. Bull. 2008, 75, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Kaczerewska, O.; Martins, R.; Figueiredo, J.; Loureiro, S.; Tedim, J. Environmental Behaviour and Ecotoxicity of Cationic Surfactants towards Marine Organisms. J. Hazard. Mater. 2020, 392, 122299. [Google Scholar] [CrossRef]
- Mochida, K.; Hano, T.; Onduka, T.; Ichihashi, H.; Amano, H.; Ito, M.; Ito, K.; Tanaka, H.; Fujii, K. Spatial Analysis of 4,5-Dichloro-2-n-Octyl-4-Isothiazolin-3-One (Sea-Nine 211) Concentrations and Probabilistic Risk to Marine Organisms in Hiroshima Bay, Japan. Environ. Pollut. 2015, 204, 233–240. [Google Scholar] [CrossRef]
- Pawar, A.P.; Sanaye, S.V.; Shyama, S.; Sreepada, R.A.; Dake, A.S. Effects of Salinity and Temperature on the Acute Toxicity of the Pesticides, Dimethoate and Chlorpyrifos in Post-Larvae and Juveniles of the Whiteleg Shrimp. Aquac. Rep. 2020, 16, 100240. [Google Scholar] [CrossRef]
- Pörtner, H.O. Integrating Climate-Related Stressor Effects on Marine Organisms: Unifying Principles Linking Molecule to Ecosystem-Level Changes. Mar. Ecol. Prog. Ser. 2012, 470, 273–290. [Google Scholar] [CrossRef] [Green Version]
Nanomaterial | Concentration (mg L−1) | DLS (nm) | (ζ) | PdI |
---|---|---|---|---|
SiNC | 0.001 | 203.37 | 30.90 | 0.45 |
0.1 | 210.33 | 27.23 | 0.50 | |
10 | 226.21 | 29.34 | 0.55 | |
SiNC-DCOIT | 0.001 | 202.67 | 12.15 | 0.58 |
0.1 | 206.12 | 11.26 | 0.44 | |
10 | 231.11 | 13.93 | 0.52 |
Species | SiNC (µg L−1) | DCOIT (µg L−1) | SiNC-DCOIT (µg DCOIT L−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MLC | NOEC | LOEC | E/IC50 (95%IC) | MIC | MLC | NOEC | LOEC | E/IC50 (95%IC) | MIC | MLC | NOEC | LOEC | E/IC50 (95% IC) | |
Nitokra sp. | – | – | 1 | 10 | 12.8 (3.22–50.7) | – | – | 0.1 | 1 | 0.322 (0.10–1.09) | – | – | 0.1 | 1 | 1.27 (0.60–2.69) |
E. lucunter | – | – | 100 | >100 | no observed effect | – | – | 0.03 | 0.1 | 0.162 (0.12–0.22) | – | – | 3.33 | 1 | 13.5 (8.44–21.7) |
M. quinquiesperforata | – | – | 6.5 | 32.3 | 57.6 (26.0–127.7) | – | – | 0.1 | 0.33 | 0.166 (0.10–0.28) | – | – | 0.33 | 1 | 8.12 (3.13–21.0) |
V. parahaemolyticus | nd | nd | nd | nd | nd | 103 | ≥104 | 100 | 103 | nd | 103 | ≥104 | 100 | 103 | nd |
P. citrinum | nd | nd | nd | nd | nd | 103 | 103 | 100 | 103 | nd | 103 | ≥104 | 100 | 103 | nd |
C. minutissima | nd | nd | nd | 103 | 2240 (nd) | nd | nd | nd | 50 | 40 (nd) | nd | nd | nd | 500 | 625 (nd) |
Taxa | Species | Life Stage | Exposure Time | DCOIT (µg L−1) | SiNC-DCOIT (µg DCOIT L−1) | Reference |
---|---|---|---|---|---|---|
Bacteria | Vibrio parahaemolyticus | 48 h | 100 | 100 | This study | |
Fungi | Penicillium citrinum | 48 h | 100 | 100 | This study | |
Microalgae | Chlorella minutissima | 96 h | ≤10 | ≤100 | This study | |
Phaeodactylum tricornutum | 72 h | 3 | 1 | [36] | ||
Skeletonema costatum | 72 h | 0.06 | na | [56] | ||
Macroalgae | Fucus serratus | Zygotes | 72 h | 8 | na | [18] |
Ascidiacea | Ciona intestinalis | Embryo | 48 h | 17 | na | [17] |
Crustaceans | Nitokra sp. | Ovigerous female | 7 d | 0.1 | 1 | This study |
Mysidopsis juniae | Juvenile | 7 d | 3 | 1.83 | [42] | |
Americamysis bahia | Juvenile | 28 d | 0.63 | na | [57] | |
Mollusk | Perna perna | Embryo | 48 h | 1 | 0.064 | [41] |
Echinoderm | Echinometra lucunter | Embryo | 48 h | 0.03 | 3.33 | This study |
Mellita quinquiesperforata | Embryo | 36 h | 0.1 | 0.33 | This study | |
Anthocidaris crassispina | Embryo | 32 h | 0.00000001 | na | [58] | |
Fish | Cyprinodon variegatus | Embryo | 35 d | 6 | na | [57] |
Probabilistic/Stastical Approach | Deterministic Approach | |||
---|---|---|---|---|
Tested Chemical | HC5 | CI95% | PNECmarine | PNECmarine |
DCOIT (µg L−1) | 0.00012 | 0.000001-0.003186 | 0.00012 | 1 × 10−9 |
SiNC-DCOIT (µg DCOIT L−1) | 0.02902 | 0.000235-0.219391 | 0.00967 | 0.00128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perina, F.; Ottoni, C.; Santos, J.; Santos, V.; Silva, M.; Campos, B.; Fontes, M.; Santana, D.; Maia, F.; Abessa, D.; et al. Marine Hazard Assessment of Soluble and Nanostructured Forms of the Booster Biocide DCOIT in Tropical Waters. Water 2023, 15, 1185. https://doi.org/10.3390/w15061185
Perina F, Ottoni C, Santos J, Santos V, Silva M, Campos B, Fontes M, Santana D, Maia F, Abessa D, et al. Marine Hazard Assessment of Soluble and Nanostructured Forms of the Booster Biocide DCOIT in Tropical Waters. Water. 2023; 15(6):1185. https://doi.org/10.3390/w15061185
Chicago/Turabian StylePerina, Fernando, Cristiane Ottoni, Juliana Santos, Vithória Santos, Mariana Silva, Bruno Campos, Mayana Fontes, Debora Santana, Frederico Maia, Denis Abessa, and et al. 2023. "Marine Hazard Assessment of Soluble and Nanostructured Forms of the Booster Biocide DCOIT in Tropical Waters" Water 15, no. 6: 1185. https://doi.org/10.3390/w15061185
APA StylePerina, F., Ottoni, C., Santos, J., Santos, V., Silva, M., Campos, B., Fontes, M., Santana, D., Maia, F., Abessa, D., & Martins, R. (2023). Marine Hazard Assessment of Soluble and Nanostructured Forms of the Booster Biocide DCOIT in Tropical Waters. Water, 15(6), 1185. https://doi.org/10.3390/w15061185