Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Geology
2.2.2. Soil/Surface Permeability
2.2.3. Slope
2.2.4. Rainfall
2.2.5. Unsaturated Thickness
2.2.6. Water Quality
2.2.7. Transmissivity
2.2.8. Distance from surface water
2.2.9. Land Use/Landcover
3. Artificial Neural Network (ANN)
4. Results and Discussion
4.1. ANN Approach
4.2. Field Application and Future Research Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the Surface of Global Change: Impacts of Climate Change on Groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Arefin, R. Groundwater Potential Zone Identification at Plio-Pleistocene Elevated Tract, Bangladesh: AHP-GIS and Remote Sensing Approach. Groundw. Sustain. Dev. 2020, 10, 100340. [Google Scholar] [CrossRef]
- Nhamo, L.; Ebrahim, G.Y.; Mabhaudhi, T.; Mpandeli, S.; Magombeyi, M.; Chitakira, M.; Magidi, J.; Sibanda, M. An Assessment of Groundwater Use in Irrigated Agriculture Using Multi-Spectral Remote Sensing. Phys. Chem. Earth Parts A/B/C 2020, 115, 102810. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, X.; Zhu, B.; Meng, S.; Yao, Y. Unexpected Groundwater Recovery with Decreasing Agricultural Irrigation in the Yellow River Basin. Agric. Water Manag. 2019, 213, 858–867. [Google Scholar] [CrossRef]
- Nabavi, E. Failed Policies, Falling Aquifers: Unpacking GroundwaterOverabstraction in Iran. Water Altern. 2018, 11, 699–724. [Google Scholar]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater Depletion Embedded in International Food Trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventory of Managed Aquifer Recharge Sites in Europe: Historical Development, Current Situation and Perspectives. Hydrogeol. J. 2017, 25, 1909–1922. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, A.; Tabatabaei, S.H.; Mahdavi, R.; Nouri Emamzadei, M.R. Application of Digital Techniques to Identify Aquifer Artificial Recharge Sites in GIS Environment. Int. J. Digit. Earth 2013, 6, 589–609. [Google Scholar] [CrossRef] [Green Version]
- Olden, J.D.; Lawler, J.J.; Poff, N.L. Machine Learning Methods without Tears: A Primer for Ecologists. Q. Rev. Biol. 2008, 83, 171–193. [Google Scholar] [CrossRef] [Green Version]
- Kundu, M.; Zafor, A.; Maiti, R. Assessing the Nature of Potential Groundwater Zones through Machine Learning (ML) Algorithm in Tropical Plateau Region, West Bengal, India. Acta Geophys. 2023, 1–16. [Google Scholar] [CrossRef]
- Masroor, M.; Sajjad, H.; Kumar, P.; Saha, T.K.; Rahaman, M.H.; Choudhari, P.; Kulimushi, L.C.; Pal, S.; Saito, O. Novel Ensemble Machine Learning Modeling Approach for Groundwater Potential Mapping in Parbhani District of Maharashtra, India. Water 2023, 15, 419. [Google Scholar] [CrossRef]
- Jalaee, M.S.; Shakibaei, A.; Ghaseminejad, A.; Jalaee, S.A.; Derakhshani, R. A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran. Sustainability 2021, 13, 7612. [Google Scholar] [CrossRef]
- Jalaee, S.A.; Shakibaei, A.; Akbarifard, H.; Horry, H.R.; GhasemiNejad, A.; Nazari Robati, F.; Amani zarin, N.; Derakhshani, R. A Novel Hybrid Method Based on Cuckoo Optimization Algorithm and Artificial Neural Network to Forecast World’s Carbon Dioxide Emission. MethodsX 2021, 8, 101310. [Google Scholar] [CrossRef] [PubMed]
- Taormina, R.; Chau, K.W.; Sivakumar, B. Neural Network River Forecasting through Baseflow Separation and Binary-Coded Swarm Optimization. J. Hydrol. 2015, 529, 1788–1797. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Raul, S.K.; Panda, R.K.; Sudheer, K.P. Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites. Water Resour. Manag. 2015, 29, 5521–5532. [Google Scholar] [CrossRef]
- Corsini, A.; Cervi, F.; Ronchetti, F. Weight of Evidence and Artificial Neural Networks for Potential Groundwater Spring Mapping: An Application to the Mt. Modino Area (Northern Apennines, Italy). Geomorphology 2009, 111, 79–87. [Google Scholar] [CrossRef]
- Pasandi, M.; Salmani, N.; Samani, N. Spatial Estimation of Water-Table Depth by Artificial Neural Networks in Light of Ancillary Data. Hydrol. Sci. J. 2017, 62, 2012–2024. [Google Scholar] [CrossRef]
- Kong-A-Siou, L.; Johannet, A.; Borrell Estupina, V.; Pistre, S. Neural Networks for Karst Groundwater Management: Case of the Lez Spring (Southern France). Environ. Earth Sci. 2015, 74, 7617–7632. [Google Scholar] [CrossRef]
- Jiang, Z.; Mallants, D.; Peeters, L.; Gao, L.; Soerensen, C.; Mariethoz, G. High-Resolution Paleovalley Classification from Airborne Electromagnetic Imaging and Deep Neural Network Training Using Digital Elevation Model Data. Hydrol. Earth Syst. Sci. 2019, 23, 2561–2580. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.J.; Kavianpour, M.R.; Danesh, M.; Adolf, J.; Shamshirband, S.; Chau, K.W. Effect of River Flow on the Quality of Estuarine and Coastal Waters Using Machine Learning Models. Eng. Appl. Comput. Fluid Mech. 2018, 12, 810–823. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Gao, L.; Marcos-Martinez, R.; Mallants, D.; Bryan, B.A. Projecting Australia’s Forest Cover Dynamics and Exploring Influential Factors Using Deep Learning. Environ. Model. Softw. 2019, 119, 407–417. [Google Scholar] [CrossRef]
- Scher, S. Toward Data-Driven Weather and Climate Forecasting: Approximating a Simple General Circulation Model with Deep Learning. Geophys. Res. Lett. 2018, 45, 12–616. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.Q.; Xu, J.; Wei, J. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models. Geophys. Res. Lett. 2018, 45, 3706–3716. [Google Scholar] [CrossRef] [Green Version]
- Rahnama-Rad, J.; Bavali, M.Y.; Derakhshani, R. Optimization of Hydraulic Parameters of Iranshahr Alluvial Aquifer. Am. J. Environ. Sci. 2010, 6, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.H.; Sajjad, H.; Masroor, M.; Bhuyan, N.; Rehman, S. Delineating Groundwater Potential Zones Using Geospatial Techniques and Fuzzy Analytical Hierarchy Process (FAHP) Ensemble in the Data-Scarce Region: Evidence from the Lower Thoubal River Watershed of Manipur, India. Arab. J. Geosci. 2022, 15, 677. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Delineation of Groundwater Potential Zones in a Drought-Prone Semi-Arid Region of East India Using GIS and Analytical Hierarchical Process Techniques. Catena 2020, 194, 104681. [Google Scholar] [CrossRef]
- Doke, A.B.; Zolekar, R.B.; Patel, H.; Das, S. Geospatial Mapping of Groundwater Potential Zones Using Multi-Criteria Decision-Making AHP Approach in a Hardrock Basaltic Terrain in India. Ecol. Indic 2021, 127, 107685. [Google Scholar] [CrossRef]
- Chen, G. Agricultural Water Efficiency Evaluation Method Based on Remote Sensing Technology. Rev. Fac. Agron. Univ. Zulia 2019, 36, 1439–1450. [Google Scholar]
- Campos Pinto, L.; de Mello, C.R.; Norton, L.D.; Owens, P.R.; Curi, N. Spatial Prediction of Soil–Water Transmissivity Based on Fuzzy Logic in a Brazilian Headwater Watershed. Catena 2016, 143, 26–34. [Google Scholar] [CrossRef]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-Criteria Analysis and GIS Modeling for Identifying Prospective Water Harvesting and Artificial Recharge Sites for Sustainable Water Supply. J. Clean Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Ray, S. A Quick Review of Machine Learning Algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 35–39. [Google Scholar]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.M. Groundwater Potential Mapping Using an Integrated Ensemble of Three Bivariate Statistical Models with Random Forest and Logistic Model Tree Models. Water 2019, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, C.G.; Lee, J.E.; Kim, N.W.; Kim, H. Application of Artificial Neural Networks to Rainfall Forecasting in the Geum River Basin, Korea. Water 2018, 10, 1448. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.T.; Ha, D.H.; Jaafari, A.; Nguyen, H.D.; van Phong, T.; Al-Ansari, N.; Prakash, I.; van Le, H.; Pham, B.T. Groundwater Potential Mapping Combining Artificial Neural Network and Real Adaboost Ensemble Technique: The Daknong Province Case-Study, Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabameri, A.; Pal, S.C.; Rezaie, F.; Nalivan, O.A.; Chowdhuri, I.; Saha, A.; Lee, S.; Moayedi, H. Modeling Groundwater Potential Using Novel GIS-Based Machine-Learning Ensemble Techniques. J. Hydrol. Reg. Stud. 2021, 36, 100848. [Google Scholar] [CrossRef]
- Rabet, A.; Dastranj, A.; Asadi, S.; Asadi Nalivan, O. Determination of Groundwater Potential Using Artificial Neural Network, Random Forest, Support Vector Machine and Linear Regression Models (Case Study: Lake Urmia Watershed). Iran. J. Ecohydrol. 2020, 7, 1047–1060. [Google Scholar]
- Siabi, E.K.; Dile, Y.T.; Kabo-Bah, A.T.; Amo-Boateng, M.; Anornu, G.K.; Akpoti, K.; Vuu, C.; Donkor, P.; Mensah, S.K.; Incoom, A.B.M.; et al. Machine Learning Based Groundwater Prediction in a Data-Scarce Basin of Ghana. Appl. Artif. Intell. 2022, 36, 2138130. [Google Scholar] [CrossRef]
- Bui, D.T.; Shirzadi, A.; Chapi, K.; Shahabi, H.; Pradhan, B.; Pham, B.T.; Singh, V.P.; Chen, W.; Khosravi, K.; Bin Ahmad, B.; et al. A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water 2019, 11, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mallick, J.; Khan, R.A.; Ahmed, M.; Alqadhi, S.D.; Alsubih, M.; Falqi, I.; Hasan, M.A. Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques. Water 2019, 11, 2656. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elmaboud, M.E.; Abdel-Gawad, H.A.; El-Alfy, K.S.; Ezzeldin, M.M. Estimation of Groundwater Recharge Using Simulation-Optimization Model and Cascade Forward ANN at East Nile Delta Aquifer, Egypt. J. Hydrol. Reg. Stud. 2021, 34, 100784. [Google Scholar] [CrossRef]
- Zaresefat, M.; Ahrari, M.; Reza Shoaei, G.; Etemadifar, M.; Aghamolaie, I.; Derakhshani, R. Identification of Suitable Site-Specific Recharge Areas Using Fuzzy Analytic Hierarchy Process (FAHP) Technique: A Case Study of Iranshahr Basin (Iran). Air Soil Water Res. 2022, 15, 11786221211063849. [Google Scholar] [CrossRef]
BGWAN Process | Data Usage | MSE | RMSE | R |
---|---|---|---|---|
training | 70% | 3.71359 × 10−3 | 0.060939 | 0.969864 |
validation | 15% | 3.94606 × 10−3 | 0.062818 | 0.968400 |
testing | 15% | 4.20498 × 10−3 | 0.064846 | 0.967469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaresefat, M.; Derakhshani, R.; Nikpeyman, V.; GhasemiNejad, A.; Raoof, A. Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water 2023, 15, 1182. https://doi.org/10.3390/w15061182
Zaresefat M, Derakhshani R, Nikpeyman V, GhasemiNejad A, Raoof A. Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water. 2023; 15(6):1182. https://doi.org/10.3390/w15061182
Chicago/Turabian StyleZaresefat, Mojtaba, Reza Derakhshani, Vahid Nikpeyman, Amin GhasemiNejad, and Amir Raoof. 2023. "Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin" Water 15, no. 6: 1182. https://doi.org/10.3390/w15061182
APA StyleZaresefat, M., Derakhshani, R., Nikpeyman, V., GhasemiNejad, A., & Raoof, A. (2023). Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water, 15(6), 1182. https://doi.org/10.3390/w15061182