Evaluation of Social Vulnerability to Flood Hazard in Basilicata Region (Southern Italy)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Selection of the Municipalities
- High Probability
- Medium Probability
- Low Probability
3.2. Assessment of Flood Hazard at the Municipality Level
3.3. Identification of the Social Vulnerability Indicators
3.4. Application of the Multivariate Statistical Analysis
3.5. Construction and Mapping of the SVI
3.6. Overlap of Flood Hazard with Social Vulnerability Maps
4. Results
4.1. Municipalities under Investigation
4.2. Flood Hazard Scenarios
4.3. Social Vulnerability Indicators
4.4. Main Socio-Economic Factors
4.5. SVI and Raster Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldsmith, M.; Williams, J.; Payan, J.L.; Stocker, H. Flood Hazard of Dunedin’s Urban Streams. Review of Dunedin City District Plan: Natural Hazards; Otago Regional Council: Dunedin, New Zealand, 2014; ISBN 978-0-478-37680-7. [Google Scholar]
- Rhoads, B. The Dynamics of Floodplains. In River Dynamics: Geomorphology to Support Management; Cambridge University Press: Cambridge, UK, 2020; pp. 319–342. [Google Scholar] [CrossRef]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Chan, N.W. Impacts of Disasters and Disasters Risk Management in Malaysia: The Case of Floods. In Economic and Welfare Impacts of Disasters in East Asia and Policy Responses; Sawada, Y., Oum, S., Eds.; ERIA Research Project Report 2011-8; ERIA: Jakarta, Indonesia, 2012; pp. 503–551. [Google Scholar]
- WHO (World Health Organization). Flooding: Managing Health Risks in the WHO European Region; WHO Regional Office for Europe UN City: Copenhagen, Denmark, 2017; ISBN 9789289052795. [Google Scholar]
- Farsangi, E.N. Natural Hazards—Impacts, Adjustments and Resilience; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Refice, A.; Capolongo, D.; Chini, M.; D’Addabbo, A. Improving flood detection and monitoring through remote sensing. Water 2022, 14, 364. [Google Scholar] [CrossRef]
- CRED (Center for Research on the Epidemiology of Disasters) Crunch. Natural Hazards & Disasters. In An Overview of the First Half of 2022; Issue no. 68; Institute of Health & Society (IRSS), UCLouvain: Brussels, Belgium, 2022. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, K.E.S., Mintenbeck, A., Alegría, M., Craig, S., Langsdorf, S., Löschke, V., Möller, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Theodoridou, T. Flood Exposure of Residential Areas and Infrastructure in Greece. Hydrology 2022, 9, 145. [Google Scholar] [CrossRef]
- Koks, E.E.; van Ginkel, M.J.E.; Lemnitzer, A. Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event. Nat. Hazards Earth Syst. Sci. 2022, 22, 3831–3838. [Google Scholar] [CrossRef]
- ISPRA. Landslides and Floods in Italy: Hazard and Risk Indicators, 2021 ed.; ISPRA: Rome, Italy, 2021; ISBN 978-88-448-1085-6. [Google Scholar]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Yan, K.; Brandimarte, L.; Blöschl, G. Debates—Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 2015, 51, 4770–4781. [Google Scholar] [CrossRef]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci 2014, 14, 1921–1942. [Google Scholar] [CrossRef] [Green Version]
- Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks (Text with EEA relevance) OJ L 288, 06/11/2007, 27–3. Available online: https://eur-lex.europa.eu/eli/dir/2007/60/oj (accessed on 17 February 2023).
- UNDRR (United Nations for Disaster Risk Reduction). Global Assessment Report on Disaster Risk Reduction 2015: Making Development Sustainable: The Future of Disaster Risk Management; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Clark, G.; Moser, S.; Ratick, S.; Dow, K.; Meyer, W.; Emani, S.; Jin, W.; Kasperson, J.; Kasperson, R.; Schwarz, H.E. Assessing the vulnerability of coastal communities to extreme storms: The case of Revere, MA, USA. Mitig. Adapt. Strateg. Glob. Chang. 1998, 3, 59–82. [Google Scholar] [CrossRef]
- UNDRR. Hazard Definition & Classification Review; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2020. [Google Scholar]
- UNISDR (United Nations International Strategy for Disaster Reduction). Living with Risk: A Global Review of Disaster Reduction Initiatives; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2004. [Google Scholar]
- UNISDR. Terminology on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2009. [Google Scholar]
- Liverman, D.M. Vulnerability to Global Environmental Change. In Understanding Global Environmental Change: The Contributions of Risk Analysis and Management; Kasperson, R.E., Dow, K., Golding, D., Kasperson, J.X., Eds.; Clark University: Worcester, MA, USA, 1990; pp. 27–44. [Google Scholar]
- Maskrey, A. Vulnerability Accumulation in Peripheral Regions in Latin America: The Challenge for Disaster Prevention and Management. In Natural Disasters: Protecting Vulnerable Communities; Merriman, P.A., Browitt, C.W., Eds.; IDNDR: London, UK, 1993; pp. 461–472. [Google Scholar]
- Cannon, T. Vulnerability Analysis and the Explanation of ‘Natural’ Disasters. In Disasters, Development and Environment; Varley, A., Ed.; John Wiley and Sons: Chichester, UK, 1994; pp. 13–29. [Google Scholar]
- Cannon, T. Vulnerability Analysis, Livelihoods and Disasters. In Risk 21: Coping with Risks Due to Natural Hazards in the 21st Century; Ammann, W.J., Dannenmann, S., Vulliet, L., Eds.; Taylor and Francis Group: London, UK, 2006; pp. 41–49. [Google Scholar]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. Vulnerabilidad, el Entorno Social de los Desastres; La RED-ITDG: Bogota, Colombia, 1996. [Google Scholar]
- Weichselgartner, J. Disaster mitigation: The concept of vulnerability revisited. Disaster Prev. Manag. 2001, 10, 85–94. [Google Scholar] [CrossRef]
- Bogardi, J.; Birkmann, J. Vulnerability Assessment: The First Step towards Sustainable Risk Reduction. In Disasters and Society—From Hazard Assessment to Risk Reduction; Malzahn, D., Plapp, T., Eds.; Logos Verlag: Berlin, Germany, 2004; pp. 75–82. [Google Scholar]
- Birkmann, J. Indicators and Criteria for Measuring Vulnerability: Theoretical Bases and Requirements. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; Birkmann, J., Ed.; United Nations University Press: Tokyo, Japan; New York, NY, USA, 2006; pp. 55–77. [Google Scholar]
- Janssen, M.A.; Schoon, M.L.; Ke, W.; Börner, K. Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change. Glob. Environ. Chang. 2006, 16, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Thywissen, K. Core Terminology of Disaster Risk Reduction: A comparative Glossary. In Measuring Vulnerability to Natural Hazards; Birkmann, J., Ed.; UNU Press: Tokyo, Japan, 2006; pp. 448–496. [Google Scholar]
- Burton, C.; Rufat, S.; Tate, S. Social Vulnerability: Conceptual Foundations and Geospatial Modeling. In Vulnerability and Resilience to Natural Hazards; Fuchs, S., Thaler, T., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 53–81. [Google Scholar]
- Bohle, H.G.; Downing, T.E.; Watts, M.J. Climate change and social vulnerability. Toward a sociology and geography of food insecurity. Glob. Environ. Chang. 1994, 4, 37–48. [Google Scholar] [CrossRef]
- Turner, B.L.I.; Kasperson, R.E.; Matson, P.; McCarthy, J.J.; Corell, R.W.C.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. Framework for Vulnerability Analysis in Sustainability Science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D. Principles of Emergency Planning and Management; Terra Publishing: Guildford, UK, 2002. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Mileti, D. Disasters by Design: A Reassessment of Natural Hazards in the United States; Joseph Henry Press: Washington, DC, USA, 1999. [Google Scholar]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: New York, NY, USA, 2004. [Google Scholar]
- Kates, R.W. Natural Hazard in Human Ecological Perspective: Hypotheses and Models. Econ. Geogr. 1971, 47, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Cutter, S.L. Vulnerability to environmental hazard. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Cutter, S.; Boruff, B.; Shirley, W. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Sapir, D.G. Natural and man-made disasters: The vulnerability of women-headed households and children without families. World Health Stat. Q. 1993, 4, 227–233. [Google Scholar]
- Morduch, J. Poverty and Vulnerability. Am. Econ. Rev. 1994, 84, 221–225. [Google Scholar]
- NRC (National Research Council). The Impacts of Natural Disasters: A Framework for Loss Estimation; Committee on Assessing the Costs of Natural Disasters, National Research Council, National Academy Press: Washington, DC, USA, 1999; p. 80. [Google Scholar]
- Fang, Z. A Function-Oriented Methodology of Flood Vulnerability Assessment. Master’s Thesis, Water Resources Management, Civil Engineering, Delft University of Technology, Delft, The Netherlands, 2009. [Google Scholar]
- Long, A. Poverty is the new prostitution: Race, poverty, and public housing in post-Katrina New Orleans. J. Am. Hist. 2007, 94, 795–803. [Google Scholar] [CrossRef]
- Oxfam America. Exposed: Social Vulnerability and Climate Change in the US Southeast; Oxfam America: Boston, MA, USA, 2009. [Google Scholar]
- Tate, E. Uncertainty analysis for a social vulnerability index. Ann. Assoc. Am. Geogr. 2013, 103, 526–543. [Google Scholar] [CrossRef]
- Müller, A.; Reiter, J.; Weiland, U. Assessment of urban vulnerability towards floods using an indicator-based approach—A case study for Santiago de Chile. Nat. Hazards Earth Syst. Sci. 2011, 11, 2107–2123. [Google Scholar] [CrossRef] [Green Version]
- Frigerio, I.; Ventura, S.; Strigaro, D.; Mattavelli, M.; De Amicis, M.; Mugnano, S.; Boffi, M. A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Appl. Geogr. 2016, 74, 12–22. [Google Scholar] [CrossRef]
- Frigerio, I.; De Amicis, M. Mapping social vulnerability to natural hazards in Italy: A suitable tool for risk management strategies. Environ. Sci. Policy 2016, 63, 187–196. [Google Scholar] [CrossRef]
- Birkmann, J. Measuring Vulnerability to Natural Hazard: Towards Disaster Resilient Societies; United Nations University Press: Tokyo, Japan; New York, NY, USA; Paris, France, 2014. [Google Scholar]
- Cutter, S.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.Y.; Yarnal, B.; Fisher, A. Vulnerability of coastal communities to sealevel rise: A case study of Cape May county New Jersey, USA. Clim. Res. 2002, 22, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, J.; Tobin, G.A.; Montz, B.E. Population evacuation: Assessing spatial variability in geophysical risk and social vulnerability to natural hazards. Nat. Hazard. Rev. 2005, 6, 23–33. [Google Scholar] [CrossRef]
- Dwyer, A.; Zoppou, C.; Nielsen, O.; Day, S.; Roberts, S. Quantifying Social Vulnerability: A Methodology for Identifying Those at Risk to Natural Hazards; Geoscience Australia Record: Canberra, Australia, 2004. [Google Scholar]
- Tapsell, S.M.; Penning-Rowsell, E.C.; Tunstall, S.M.; Wilson, T.L. Vulnerability to flooding: Health and social dimensions. Phil. Trans. R. Soc. A 2002, 360, 1511–1525. [Google Scholar] [CrossRef]
- Kuhlicke, C.; Scolobig, A.; Tapsell, S.M.; Steinführer, A.; De Marchi, B. Contextualizing social vulnerability: Findings from case studies across Europe. Nat. Hazards 2011, 58, 789–810. [Google Scholar] [CrossRef]
- Cardona, O.D. Indicators of Disaster Risk and Risk Management: Program for Latin America and the Caribbean: Summary Report; Inter-American Development Bank: Washington, DC, USA, 2005. [Google Scholar]
- Weichselgartner, J. About the Capacity to be Wounded: The Need to Link Disaster Mitigation and Sustainable Development. In Extreme Naturereignisse—Folgen, Vorsorge, Werkzeuge; DKKV: Bonn, Germany, 2002; pp. 150–158. [Google Scholar]
- Felsenstein, D.; Lichter, M. Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Nat. Hazards 2014, 71, 463–491. [Google Scholar] [CrossRef]
- Fekete, A. Validation of a social vulnerability index in context to river floods in Germany. Nat. Hazards Earth Syst. Sci. 2009, 9, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Siagian, T.H.; Purhadi, P.; Suhartono, S.; Ritonga, H. Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Nat. Hazards 2014, 70, 1603–1617. [Google Scholar] [CrossRef]
- Frigerio, I.; Carnelli, F.; Cabinio, M.; De Amicis, M. Spatiotemporal Pattern of Social Vulnerability in Italy. Int. J. Disaster Risk Sci. 2018, 9, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Amadio, M.; Mysiak, J.; Marzi, S. Mapping Socioeconomic Exposure for Flood Risk Assessment in Italy. Risk Anal. 2019, 39, 829–845. [Google Scholar] [CrossRef]
- Roder, G.; Sofia, G.; Wu, Z.; Tarolli, P. Assessment of Social Vulnerability to Floods in the Floodplain of Northern Italy. Weather. Clim. Soc. 2017, 9, 717–737. [Google Scholar] [CrossRef]
- Bonati, S. Contested flood risk reduction: An analysis of environmental and social claims in the city of Genoa. Int. J. Disaster Risk Reduct. 2022, 67, 102637. [Google Scholar] [CrossRef]
- Fina, S.; Heider, B.; Prota, F. Unequal Italy. Regional Socio-Economic Disparities in Italy. 2021. Available online: https://feps-europe.eu/wp-content/uploads/2021/07/Unequal-Italy-Regional-socio-economic-disparities-in-Italy.pdf (accessed on 17 February 2023).
- Tate, E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social Vulnerability to Floods: Review of Case Studies and Implications for Measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.; Gustaffson, M.; Näslund-Landenmark, B. Handbook of Vulnerability Mapping; Swedish Rescue Services Agency Janet Edwards; EU and International Affairs Department: Vienna, Austria, 2007. [Google Scholar]
- Thieken, A.H.; Muller, M.; Kleist, L.; Seifert, I.; Borst, D.; Werner, U. Regionalisation of asset values for risk analyses. Nat. Hazards Earth Syst. Sci. 2006, 6, 167–178. [Google Scholar] [CrossRef]
- Schiattarella, M. Inquadramento Geografico e Geomorfologico. In Guide Geologiche Regionali, Basilicata; Tropeano, M., Sabato, L., Schiattarella, M., Eds.; Società Geologica Italiana: Roma, Italy, 2020. [Google Scholar]
- Lazzari, M.; Gioia, D.; Anzidei, B. Landslide inventory of the Basilicata region (Southern Italy). J. Maps 2018, 14, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Dal Sasso, S.F.; Manfreda, S.; Capparelli, G.; Versace, P.; Samela, C.; Spilotro, G.; Fiorentino, M. Hydrological and Geological Hazards in Basilicata. L’Acqua 2017, 3. Available online: http://centrofunzionalebasilicata.it/it/pdf/2017_Dal_Sasso_et_al__L%27Acqua%20n.%203_bassa.pdf (accessed on 17 February 2023).
- Piccarreta, M.; Pasini, A.; Capolongo, D.; Lazzari, M. Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: The Basilicata region, southern Italy. Int. J. Climatol. 2013, 33, 3229–3248. [Google Scholar] [CrossRef]
- Vita, M.; Biscione, A.; Bruno, F.; Gerardi, M.; Lo Vecchio, G. Long term planning of flood risks and processes of urbanistic development: The case of the Basilicata region (southern Italy). Sustain. Dev. Plan. IV 2009, 2, 953. [Google Scholar] [CrossRef] [Green Version]
- Autorità di Bacino della Basilicata. Mappe della Pericolosità e Mappe del Rischio Idraulico: Relazione Maggio 2013. Available online: http://www.adb.basilicata.it/adb/Pstralcio/pianoacque/relazione_tecnica.pdf (accessed on 17 February 2023).
- Manfreda, S.; Samela, C. A digital elevation model based method for a rapid estimation of flood inundation depth. J. Flood Risk Manag. 2019, 12, e12541. [Google Scholar] [CrossRef] [Green Version]
- La Salandra, M.; Roseto, R.; Mele, D.; Dellino, P.; Capolongo, D. Probabilistic hydro-geomorphological hazard assessment based on UAV-derived high-resolution topographic data: The case of Basento river (Southern Italy). Sci. Total Environ. 2022, 842, 156736. [Google Scholar] [CrossRef] [PubMed]
- De Musso, M.; Capolongo, D.; Caldara, M.; Surian, N.; Pennetta, L. Channel changes and controlling factors over the past 150 years in the Basento River (Southern Italy). Water 2020, 12, 307. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Sole, A.; De Costanzo, G. Le Precipitazioni Estreme in Basilicata; Universosud Società Cooperativa: Potenza, Italy, 2015. [Google Scholar]
- Rizzo, A.; Aucelli, P.; Gioia, D.; Di Leo, P.; Schiattarella, D. Coastal Erosion and Inundation Assessment along the Ionian Coast of Basilicata, Southern Italy. In Proceedings of the SGI, Naples, Italy, 7–9 September 2016. [Google Scholar]
- Bentivenga, M.; Giano, S.; Piccarreta, M. Recent Increase of Flood Frequency in the Ionian Belt of Basilicata Region, Southern Italy: Human or Climatic Changes. Water 2020, 12, 2062. [Google Scholar] [CrossRef]
- Rygel, L.; O’Sullivan, D.; Yarnal, B. A method for constructing a social vulnerability index: An application to hurricane storm surges in a developed country. Mitig. Adapt. Strateg. Glob. Change 2005, 11, 741–764. [Google Scholar] [CrossRef]
- Sharma, S. Applied Multivariate Techniques; John Wiley and Sons Inc.: New York, NY, USA, 1996; p. 512. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Allyn and Bacon: New York, NY, USA, 2007. [Google Scholar]
- Morrow, B. Identifying and mapping community vulnerability. Disasters 1999, 23, 1–18. [Google Scholar] [CrossRef]
- Enarson, E. Gender and Natural Disasters. Focus Programme on Crisis Response and Reconstruction Working Paper 1. 2000, pp. 73p. Available online: http://natlex.ilo.ch/wcmsp5/groups/public/@ed_emp/@emp_ent/@ifp_crisis/documents/publication/wcms_116391.pdf (accessed on 17 February 2023).
- Bolin, R.; Stanford, L. Shelter, housing and recovery: A comparison of us disasters. Disasters 1991, 15, 24–34. [Google Scholar] [CrossRef]
- Bolin, R. Household and Community Recovery after Earthquakes; Institute of Behavioural Science, University of Colorado: Boulder, CO, USA, 1993. [Google Scholar]
- Pulido, L. Rethinking Environmental Racism: White Privilege and Urban Development in Southern California. Ann. Assoc. Am. Geogr. 2000, 90, 12–40. [Google Scholar] [CrossRef] [Green Version]
- Garbutt, K.; Ellul, C.; Fujiyama, T. Mapping Social Vulnerability to flood Hazard in Norfolk, England. Environ. Hazards 2015, 14, 156–186. [Google Scholar] [CrossRef]
- Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social vulnerability indicators in disasters: Findings from a systematic review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [Google Scholar] [CrossRef]
- Burton, C.G. Social vulnerability and hurricane impact modeling. Nat. Hazards 2010, 11, 58–68. [Google Scholar] [CrossRef]
- UNDRR. Global Assessment Report on Disaster Risk Reduction 2022. Our World at Risk: Transforming Governance for a Resilient Future; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2022. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). Addressing Societal Challenges Using Transdisciplinary Research. In OECD Science, Technology and Industry Policy Papers; OECD Publishing: Paris, France, 2020; p. 88. [Google Scholar] [CrossRef]
- Priest, S. Why understanding behaviour matters for flood risk management? Flood Risk Manag. 2021, 14, 2724. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal vulnerability assessment along the north-eastern sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Tate, E.; Rahman, M.A.; Emrich, C.T.; Sampson, C.C. Flood exposure and social vulnerability in the United States. Nat. Hazards 2021, 106, 435–457. [Google Scholar] [CrossRef]
- Percival, S.; Teeuw, R. A methodology for urban micro-scale coastal flood vulnerability and risk assessment and mapping. Nat. Hazards 2019, 97, 355–377. [Google Scholar] [CrossRef] [Green Version]
- Murray-Rust, P. Open Data in Science. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean. Coast. Manag. 2020, 186, 105099. [Google Scholar] [CrossRef]
- Pollard, J.A.; Spencer, T.; Brooks, S.M. The interactive relationship between coastal erosion and flood risk. Prog. Phys. Geogr. Earth Environ. 2019, 43, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Vandelli, V.; Sarkar, N.; Micallef, A.S.; Soldati, M.; Rizzo, A. Coastal inundation scenarios in the north-eastern sector of the Island of Gozo (Malta, Mediterranean Sea) as a response to sea level rise. J. Maps 2022, 1–10. [Google Scholar] [CrossRef]
- Scardino, G.; Anzidei, M.; Petio, P.; Serpelloni, E.; De Santis, V.; Rizzo, A.; Liso, S.I.; Zingaro, M.; Capolongo, D.; Vecchio, A.; et al. The Impact of Future Sea-Level Rise on Low-Lying Subsiding Coasts: A Case Study of Tavoliere Delle Puglie (Southern Italy). Remote Sens. 2022, 14, 4936. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Gauci, C.; Buhagiar, G.; Micallef, A.; Soldati, M. Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action. Water 2022, 14, 416. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Rizzo, A.; Rosskopf, C.M. Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: The case of Molise region. Environ. Earth Sci. 2018, 77, 1–19. [Google Scholar] [CrossRef]
- Galina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Galina, V.; Torresan, S.; Zabeo, A.; Critto, A.; Glade, T.; Marcomini, A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability 2020, 12, 3697. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Utami, P. Measuring Social Vulnerability in Volcanic Hazards: The Case Study of Merapi Volcano, Indonesia, Earth Sciences. Master’s Thesis, University of Bristol, Bristol, UK, 2008. [Google Scholar]
- Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A. Assessment of coastal vulnerability to climate change hazards at the regional scale: The case study of the North Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2012, 12, 2347–2368. [Google Scholar] [CrossRef]
- Armaroli, C.; Duo, E.; Viavattene, C. From Hazard to Consequences: Evaluation of Direct and Indirect Impacts of Flooding Along the Emilia-Romagna Coastline, Italy. Front. Earth Sci. 2019, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Huizinga, J.; De Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions: Methodology and the Database with Guidelines; EUR 28552 EN; Publications Office of the European Union: Luxembourg, Luxembourg, 2017; ISBN 978-92-79-67781-6. [Google Scholar] [CrossRef]
- Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E. Improving flood damage assessment models in Italy. Nat. Hazards 2016, 82, 2075–2088. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 8. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Marini, K. Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future; First Mediterranean Assessment Report; MedECC (Mediterranean Experts on Climate and Environmental Change), Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; ISBN 978-2-9577416-0-1. [Google Scholar]
- Sarkar, N.; Rizzo, A.; Vandelli, V.; Soldati, M. A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot. Sustainability 2022, 14, 15994. [Google Scholar] [CrossRef]
Province | Municipality | Area (km2) | Number of Inhabitants |
---|---|---|---|
Aliano | 97.25 | 895 | |
Bernalda | 124.02 | 11998 | |
Calciano | 49.7 | 662 | |
Colobraro | 65.54 | 1064 | |
Craco | 76.41 | 639 | |
Ferrandina | 216.93 | 8061 | |
Garaguso | 38.32 | 987 | |
Grassano | 41.05 | 4784 | |
Grottole | 115.79 | 2059 | |
Irsina | 261.87 | 4427 | |
Matera | 389.17 | 59869 | |
MATERA | Miglionico | 88.33 | 2356 |
Montalbano Jonico | 133.88 | 6781 | |
Montescaglioso | 174.42 | 9194 | |
Nova Siri | 52.086 | 6691 | |
Pisticci | 232.06 | 16832 | |
Policoro | 67.03 | 17779 | |
Pomarico | 127.77 | 3819 | |
Rotondella | 76.17 | 2441 | |
Salandra | 76.39 | 2558 | |
Stigliano | 209.09 | 3680 | |
Tricarico | 175.98 | 4835 | |
Tursi | 158.62 | 4807 | |
Valsinni | 32.1 | 1365 | |
Scanzano Jonico | 71.84 | 7556 | |
Acerenza | 77.68 | 2112 | |
Albano di Lucania | 55.64 | 1358 | |
Armento | 59.6 | 579 | |
Campomaggiore | 12.5 | 732 | |
Chiaromonte | 70.82 | 1743 | |
Episcopia | 28.86 | 1273 | |
Fardella | 28.36 | 573 | |
Gallicchio | 23.83 | 811 | |
Genzano di Lucania | 207.39 | 5262 | |
Grumento Nova | 66.71 | 1559 | |
Lagonegro | 112.2 | 5127 | |
Latronico | 75.84 | 4104 | |
Lauria | 175.64 | 11993 | |
POTENZA | Maratea | 68.59 | 4767 |
Marsico Nuovo | 99.77 | 3839 | |
Marsicovetere | 38.34 | 5545 | |
Missanello | 21.97 | 480 | |
Montemurro | 56.63 | 1109 | |
Noepoli | 45.77 | 767 | |
Nemoli | 19.49 | 1402 | |
San Martino d’Agri | 50.63 | 687 | |
Sant’Arcangelo | 88.49 | 5996 | |
Senise | 95.82 | 6586 | |
Spinoso | 37.62 | 1347 | |
Tramutola | 35.28 | 2925 | |
Trecchina | 37.72 | 2149 | |
Paterno | 40.37 | 3036 | |
Vaglio Basilicata | 43.36 | 1871 | |
Potenza | 174 | 64786 | |
Rivello | 69.74 | 2537 | |
Roccanova | 61.67 | 1311 |
Indicator | Proxy Variable | Influence on Social Vulnerability |
---|---|---|
Age | Children with age < 14 years (%) | + |
Elderly with age > 65 years (%) | + | |
Population dependency ratio | + | |
Ageing index | + | |
Gender | Female residents (%) | + |
Ethnicity | Foreign residents (%) | + |
Lone parents | Single parents (%) | + |
Education | High education rate | – |
Low education rate | + | |
Employment | Employment rate | – |
Unemployment rate | + | |
Population exposure | Population density | + |
Low Income | Residents with 0 € per year (%) | + |
Residents with 0–10,000 € per year (%) | + | |
Residents with 10,000–15,000 € per year (%) | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapietra, I.; Rizzo, A.; Colacicco, R.; Dellino, P.; Capolongo, D. Evaluation of Social Vulnerability to Flood Hazard in Basilicata Region (Southern Italy). Water 2023, 15, 1175. https://doi.org/10.3390/w15061175
Lapietra I, Rizzo A, Colacicco R, Dellino P, Capolongo D. Evaluation of Social Vulnerability to Flood Hazard in Basilicata Region (Southern Italy). Water. 2023; 15(6):1175. https://doi.org/10.3390/w15061175
Chicago/Turabian StyleLapietra, Isabella, Angela Rizzo, Rosa Colacicco, Pierfrancesco Dellino, and Domenico Capolongo. 2023. "Evaluation of Social Vulnerability to Flood Hazard in Basilicata Region (Southern Italy)" Water 15, no. 6: 1175. https://doi.org/10.3390/w15061175