Dynamic Coupling Model of Water Environment of Urban Water Network in Pearl River Delta Driven by Typhoon Rain Events
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Typhoon Data
2.3. Remote-Sensing Data and Pre-Processing
2.4. Dynamic Coupling Model
3. Research Results
3.1. Results of Measured Data
3.2. Model Prediction Results
3.2.1. Model Establishment
3.2.2. Model Validation
3.2.3. Model Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Lai, Z.; Zeng, Y.; Gao, Y.; Wang, C.; Shuai, F.; Liu, Q. The Distribution and Contamination Levels of Arsenicinwater and Sediment of the Pearl River Delta. Ecol. Environ. Sci. 2015, 24, 831–837. [Google Scholar] [CrossRef]
- Yu, H.; Guo, H.; Wang, J. Comprehensive risk assessment of typhoon for regionalization—A case of population and economic risk in Guangdong Province. Acta Sci. Nat. Univ. Sunyatseni 2023, 62, 86–95. [Google Scholar] [CrossRef]
- Kim, K.O.; Yuk, J.-H.; Jung, K.T.; Choi, B.H. Swell Propagation Caused by Typhoon Passage to the Yellow and East China Seas. J. Coast. Res. 2017, 79, 144–148. [Google Scholar] [CrossRef]
- Pan, G.; Chai, F.; Tang, D.; Wang, D. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model. Ecol. Model. 2017, 356, 38–47. [Google Scholar] [CrossRef]
- Ren, G.Y.; Chen, Y.; Zou, X.K.; Zhou, Y.Q.; Wang, X.L.; Jiang, Y.; Ren, F.M.; Zhang, Q. Definition and Trend Analysis of an Integrated Extreme Climatic Index. Clim. Environ. Res. 2010, 15, 354–364. [Google Scholar]
- Ivers, L.C.; Ryan, E.T. Infectious diseases of severe weather-related and flood-related natural disasters. Curr. Opin. Infect. Dis. 2006, 19, 408–414. [Google Scholar] [CrossRef]
- Chen, X. Causes and countermeasures of typhoon disaster in Xiamen. China Flood Drought Manag. 2008, 18, 27–29. [Google Scholar] [CrossRef]
- Llanes, F.V.; Eco, R.; Herrero, T.M.; Briones, J.B.L.; Escape, C.M.; Sulapas, J.J.; Galang, J.A.M.; Ortiz, I.J.; Sabado, J.M.; Lagmay, A.M.F.; et al. Practices in disaster mitigation in the case of the 2015 Typhoon Koppu debris flows in Nueva Ecija, Philippines. Nat. Hazards 2022, 114, 665–690. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, Y.; Zhao, G.; Zhou, Y.; Wang, Z. Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China. Sustainability 2022, 14, 7616. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Xu, J.; Qiao, L.; Ma, Y.; Ding, D.; Liu, S. Responses of Yellow Sea Cold Water Mass to Typhoon Bolaven. J. Ocean Univ. China 2019, 18, 31–42. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Y.; Zhang, Y.; Chen, X.; Wang, R.; Zhu, W. Cyanobacterial bloom expansion caused by typhoon disturbance in Lake Taihu China. Environ. Sci. Pollut. Res. 2020, 27, 42294–42303. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, J.; Li, A.; Ma, X. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: In-situ seafloor observations. Mar. Geol. 2018, 406, 72–83. [Google Scholar] [CrossRef]
- Fakour, H.; Lo, S.L.; Lin, T.F. Impacts of Typhoon Soudelor (2015) on the water quality of Taipei, Taiwan. Sci. Rep. 2016, 6, 25228. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-S.; Lee, Y.-C.; Chiang, H.-M. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons. Sci. Total Environ. 2016, 557–558, 91–101. [Google Scholar] [CrossRef]
- Zeng, F.; Huang, S. Evaluation of mathematical modeling techniques for tidal river networks on Pearl River Delta. Mar. Environ. Sci. 2000, 19, 46–50. [Google Scholar]
- Li, Y.; Shi, Y.; Jing, L.; Zhu, X.; Gong, R. Advances in surface water environment numerical models. Water Resour. Prot. 2019, 35, 1–8. [Google Scholar]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Si-meng, W.; Bo-qiang, Q. Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters. Environ. Sci. 2022. [Google Scholar] [CrossRef]
- Jiren, L. Advance of hydrographic remote sensing with time. J. Hydraul. Eng. 2016, 47, 436–442. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Xiao, F.; Wang, Y.; Sun, L. Water Quality Prediction Method Based on IGRA and LSTM. Water 2018, 10, 1148. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Wang, G.; Zhang, X. A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting. Chemom. Intell. Lab. Syst. 2015, 149, 39–49. [Google Scholar] [CrossRef]
- Ding, Y.R.; Cai, Y.J.; Sun, P.D.; Chen, B. The Use of Combined Neural Networks and Genetic Algorithms for Prediction of River Water Quality. J. Appl. Res. Technol. 2014, 12, 493–499. [Google Scholar] [CrossRef]
- Mei, X.; Fu, Y.; Zhenzhong, L.; Gaohua, L.; Peiyun, Q. Forecasting of water quality using grey GM(1,1)-wavelet-GARCH hybrid method in Songhua River Basin. Trans. Chin. Soc. Agric. Eng. 2016, 32, 137–142. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A Water Quality Prediction Method Based on the Deep LSTM Network Considering Correlation in Smart Mariculture. Sensors 2019, 19, 1420. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fu, L.; He, C. Applying support vector regression to water quality modelling by remote sensing data. Int. J. Remote Sens. 2011, 32, 8615–8627. [Google Scholar] [CrossRef]
- Wang, J.; Geng, Y.; Zhao, Q.; Zhang, Y.; Miao, Y.; Yuan, X.; Jin, Y.; Zhang, W. Water Quality Prediction of Water Sources Based on Meteorological Factors using the CA-NARX Approach. Environ. Model. Assess. 2021, 26, 529–541. [Google Scholar] [CrossRef]
- Ye, H.; Chen, C.; Tang, S.; Tian, L.; Sun, Z.; Yang, C.; Liu, F. Remote sensing assessment of sediment variation in the Pearl River Estuary induced by Typhoon Vicente. Aquat. Ecosyst. Health Manag. 2014, 17, 271–279. [Google Scholar] [CrossRef]
- Nukapothula, S.; Chen, C.; Wu, J. Long-term distribution patterns of remotely sensed water quality variables in Pearl River Delta, China. Estuar. Coast. Shelf Sci. 2019, 221, 90–103. [Google Scholar] [CrossRef]
- Silveira Kupssinskü, L.; Thomassim Guimarães, T.; Menezes de Souza, E.; C. Zanotta, D.; Roberto Veronez, M.; Gonzaga, L., Jr.; Mauad, F.F. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors 2020, 20, 2125. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, M.; Wang, R. Numerical Simulation of Donghu Lake Hydrodynamics and Water Quality Based on Remote Sensing and MIKE 21. ISPRS Int. J. Geo-Inf. 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.; Hong-Yan, Z.; Jian-Jun, Z.; Si-Wen, F. Simulation Optimization Study of Satellite Remote Sensing Image Geometric Correction. Comput. Simul. 2017, 34, 4. [Google Scholar]
- Guo, Y.; Zeng, F. Atmospheric correction comparison of SPOT-5 image based on model FLAASH and model QUAC. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Xiao-Ping, W.; Ji-Yang, S.; Xin, J. Prediction of water quality index in Qiantang River based on BP neural net work model. J. Zhejiang Univ. (Eng. Sci.) 2007, 41, 4. [Google Scholar]
- Chen, J.; Yifang, B.; Songnian, L. China: Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, H.; Orozco, S.; Vera, A.; Suárez, J.; García, E.; Neria, M.; Jiménez, J. Relationship between Dissolved Oxygen, Rainfall and Temperature: Zahuapan River, Tlaxcala, Mexico. Water Technol. Sci. 2015, 6, 59–74. (In Spanish) [Google Scholar]
- Pearce, M.W.; Schumann, E.H. Dissolved Oxygen Characteristics of the Gamtoos Estuary, South Africa. Afr. J. Mar. Sci. 2010, 25, 99–109. [Google Scholar] [CrossRef]
- Rui, C.; Shu, L.; Zhong-ya, F.; Wen-jing, L.; Fan-tang, Z.; Ben-jian, M.; Lei, S.; Zhi-wei, H. Effects of Continuous Extreme Rainfall on Water Quality of the Dongjiang River Basin. Environ. Sci. 2019, 40, 4440–4449. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Most Searched Topics in the Scientific Literature on Failures in Photovoltaic Installations. Energies 2022, 15, 8108. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, X.; Wei, W.; Cheng, X. Risk Assessment of Water Inrush in Tunnels: A Case Study of a Tunnel in Guangdong Province, China. Sustainability 2022, 14, 11443. [Google Scholar] [CrossRef]
- Mishra, B.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Liya, G.; Linruo, Z.; Zhiran, X. Water security under the impact of climate change and sustainable solutions. China Water Resour. 2022, 9, 3. [Google Scholar]
- Hui, B.; Yan, C.; Dong, W.; Shunze, W.; Wei, G.; Huaicheng, G. Study on the Classification of Response Relationship between Total Pollutant Emission Reduction and Water Quality Improvement in China. Acta Sci. Nat. Univ. Pekin. 2020, 56, 7. [Google Scholar] [CrossRef]
Input | Band1 | 1327 | 1415 | 1137 | 906 |
Band2 | 3458 | 2789 | 2176 | 1546 | |
Band3 | 1623 | 1627 | 1407 | 1242 | |
Band4 | 1522 | 1516 | 1344 | 1201 | |
Band5 | 3547 | 2947 | 2261 | 1560 | |
Band6 | 2484 | 2389 | 1647 | 1038 | |
Band7 | 1324 | 1485 | 1011 | 347 | |
Cumulative Daily Rainfall | 20.9 | 15.3 | 16.7 | 15.6 | |
Interval Time | 4 | 4 | 3 | 3 | |
Output | DO Measured Value | 8.11 | 1.67 | 7.51 | 5.74 |
DO Predicted Value | 8.7593 | 2.9453 | 6.8528 | 6.1914 | |
NH3-N Measured Value | 0 | 2.17 | 0.15 | 0.03 | |
NH3-N Predicted Value | −0.0733 | 2.2191 | 0.2091 | 0.0435 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Jin, Y.; Cong, P.; Li, G. Dynamic Coupling Model of Water Environment of Urban Water Network in Pearl River Delta Driven by Typhoon Rain Events. Water 2023, 15, 1084. https://doi.org/10.3390/w15061084
Shen W, Jin Y, Cong P, Li G. Dynamic Coupling Model of Water Environment of Urban Water Network in Pearl River Delta Driven by Typhoon Rain Events. Water. 2023; 15(6):1084. https://doi.org/10.3390/w15061084
Chicago/Turabian StyleShen, Weiping, Yuhao Jin, Peitong Cong, and Gengying Li. 2023. "Dynamic Coupling Model of Water Environment of Urban Water Network in Pearl River Delta Driven by Typhoon Rain Events" Water 15, no. 6: 1084. https://doi.org/10.3390/w15061084