Global Trends and Prospects of Nepheloid Layers: A Comprehensive Bibliometric Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Source and Bibliometric Tools
2.2. Data Collection and Search Criteria
2.3. Data Analysis and Evaluation Metrics
3. Results and Discussion
3.1. Publication and Citation Evolutionary Trends Analysis
3.1.1. Temporal and Spatial Distribution of Publications
3.1.2. Evolution of Research Areas and Sources of Publications
3.1.3. Most Cited Publication Analysis and Co-Citation Reference
3.2. Keywords Evolution and Co-Occurrence Analysis
3.2.1. Keyword Timeline Evolution Analysis
3.2.2. Keyword Burst Detection Analysis
3.2.3. Keyword Co-Occurrence Analysis
3.3. Author Influence and Partnerships Network Analysis
3.3.1. Author Network and Most Productive Authors
3.3.2. Country/Region Collaboration Network
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puig, P.; Palanques, A.; Martin, J. Contemporary Sediment-Transport Processes in Submarine Canyons. Annu. Rev. Mar. Sci. 2014, 6, 53–77. [Google Scholar] [CrossRef] [PubMed]
- McCave, I.N. Local and global aspects of the bottom nepheloid layers in the world ocean. Neth. J. Sea Res. 1986, 20, 167–181. [Google Scholar] [CrossRef]
- Dickson, R.R.; McCave, I.N. Nepheloid layers on the continental slope west of Porcupine Bank. EEP Sea Res. Part I Oceanogr. Res. Pap. 1986, 33, 791–818. [Google Scholar] [CrossRef]
- Kalle, K. Nahrstoff-Untersuchungen als hydrographisches Hilfsmittel zur Unterscheidung von Wasserkorpern. Ann. Hydrogr. Marit. Meteorol. Suspended Part. Loads Transp. Nepheloid Layer Abyssal Atl. Ocean. 1937, 65, 1–18. [Google Scholar]
- Ewing, M.; Thorndike, E.M. Suspended matter in deep ocean water. Science 1965, 147, 1291–1294. [Google Scholar] [CrossRef]
- Biscaye, P.E.; Eittreim, S.L. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. Mar. Geol. 1977, 23, 155–172. [Google Scholar] [CrossRef]
- Canals, M.; Puig, P.; de Madron, X.D.; Heussner, S.; Palanques, A.; Fabres, J. Flushing submarine canyons. Nature 2006, 444, 354–357. [Google Scholar] [CrossRef]
- Madron, X.D. Hydrography and nepheloid structures in the Grand-Rhone canyon. Cont. Shelf Res. 1994, 14, 457–477. [Google Scholar] [CrossRef]
- Liu, J.T.; Wang, Y.H.; Lee, I.H.; Hsu, R.T. Quantifying tidal signatures of the benthic nepheloid layer in Gaoping Submarine Canyon in Southern Taiwan. Mar. Geol. 2010, 271, 119–130. [Google Scholar] [CrossRef]
- Puig, P.; Palanques, A.; Guillen, J.; El Khatab, M. Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: Implications for continental margin shaping. J. Geophys. Res. Oceans 2004, 109, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shideler, G.L. Development of the benethic nepheloid layer on the south Texas continental shelf, western Gulf of Mexico. Mar. Geol. 1981, 41, 37–61. [Google Scholar] [CrossRef]
- Oliveira, A.; Vitorino, J.; Rodrigues, A.; Jouanneau, J.M.; Dias, J.A.; Weber, O. Nepheloid layer dynamics in the northern Portuguese shelf. Prog. Oceanogr. 2002, 52, 195–213. [Google Scholar] [CrossRef]
- Naudin, J.J.; Cauwet, G. Transfer mechanisms and biogeochemical implications in the bottom nepheloid layer. a case study of the coastal zone off the Rhone River (France). Deep. Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 551–575. [Google Scholar] [CrossRef]
- Bourgault, D.; Morsilli, M.; Richards, C.; Neumeier, U.; Kelley, D.E. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Cont. Shelf Res. 2014, 72, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Huthnance, J.M. The pattern of cross-slope depositional fluxes. Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 1565–1591. [Google Scholar] [CrossRef]
- Wilson, A.M.; Kiriakoulakis, K.; Raine, R.; Gerritsen, H.D.; Blackbird, S.; Allcock, A.L.; White, M. Anthropogenic influence on sediment transport in the Whittard Canyon, NE Atlantic. Mar. Pollut. Bull. 2015, 101, 320–329. [Google Scholar] [CrossRef]
- Tripsanas, E.K.; Piper, D.J.W. Late Quaternary stratigraphy and sedimentology of Orphan Basin: Implications for meltwater dispersal in the southern Labrador Sea. Paleogeogr. Paleoclimatol. Paleoecol. 2008, 260, 521–539. [Google Scholar] [CrossRef]
- Markov, Y.D.; Likht, F.R.; Derkachev, A.N.; Utkin, I.V.; Botsul, A.I.; Pushkar, V.S.; Ivanova, E.D.; Evstigneeva, T.A.; Evseev, G.A. Sediments of Buried Paleovalleys on the Shelf of East Korean Bay as Indicators of Holocene Paleogeographic Settings. Russ. J. Pac. Geol. 2008, 2, 255–271. [Google Scholar] [CrossRef]
- Rashid, H.; Hesse, R.; Piper, D.J.W. Distribution, thickness and origin of Heinrich layer 3 in the Labrador Sea. Earth Planet Sci. Lett. 2003, 205, 281–293. [Google Scholar] [CrossRef]
- John, S.G.; Liang, H.D.; Weber, T.; DeVries, T.; Primeau, F.; Moore, K.; Holzer, M.; Mahowald, N.; Gardner, W.; Mishonov, A.; et al. AWESOME OCIM: A simple, flexible, and powerful tool for modeling elemental cycling in the oceans. Chem. Geol. 2020, 533, 1–15. [Google Scholar] [CrossRef]
- Hwang, J.; Manganini, S.J.; Montlucon, D.B.; Eglinton, T.I. Dynamics of particle export on the Northwest Atlantic margin. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1792–1803. [Google Scholar] [CrossRef]
- Yurkovskis, A. Seasonal benthic nepheloid layer in the Gulf of Riga, Baltic Sea: Sources, structure and geochemical interactions. Cont. Shelf Res. 2005, 25, 2182–2195. [Google Scholar] [CrossRef]
- Pudsey, C.J.; Camerlenghi, A. Glacial-interglacial deposition on a sediment drift on the Pacific margin of the Antarctic Peninsula. Antarct. Sci. 1998, 10, 286–308. [Google Scholar] [CrossRef]
- Nyffeler, F.; Godet, C.-H. The structural parameters of the benthic nepheloid layer in the northeast Atlantic. Deep Sea Res. Part. I Oceanogr. Res. Pap. 1986, 33, 195–207. [Google Scholar] [CrossRef]
- Kato, Y.; Kitazato, H.; Shimanaga, M.; Nakatsuka, T.; Shirayama, Y.; Masuzawa, T. 210Pb and 137Cs in sediments from Sagami Bay, Japan: Sedimentation rates and inventories. Prog. Oceanogr. 2003, 57, 77–95. [Google Scholar] [CrossRef]
- Pierce, J.W. Suspended sediment transport at the shelf break and over the outer margin. In Marine Sediment Transport and Environmental Management; Stanley, D.J., Swift, D., Eds.; John Wiley and Sons: New York, NY, USA, 1976; pp. 437–458. [Google Scholar]
- Lorenzoni, L.; Thunell, R.C.; Benitez-Nelson, C.R.; Hollander, D.; Martinez, N.; Tappa, E.; Varela, R.; Astor, Y.; Muller-Karger, F.E. The importance of subsurface nepheloid layers in transport and delivery of sediments to the eastern Cariaco Basin, Venezuela. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 2249–2262. [Google Scholar] [CrossRef]
- Ribo, M.; Puig, P.; Salat, J.; Palanques, A. Nepheloid layer distribution in the Gulf of Valencia, northwestern Mediterranean. J. Mar. Syst. 2013, 111, 130–138. [Google Scholar] [CrossRef]
- Gardner, W.D.; Walsh, I.D.; Richardson, M.J. Biophysical forcing of particle production and distribution during a spring bloom in the North Atlantic. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1993, 40, 171–195. [Google Scholar] [CrossRef]
- Gundersen, J.S.; Gardner, W.D.; Richardson, M.J.; Walsh, I.D. Effects of monsoons on the seasonal and spatial distributions of POC and chlorophyll in the Arabian Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1998, 45, 2103–2132. [Google Scholar] [CrossRef]
- Many, G.; Bourrin, F.; Madron, X.D.; Ody, A.; Doxaran, D.; Cauchy, P. Glider and satellite monitoring of the variability of the suspended particle distribution and size in the Rhône ROFI. Prog. Oceanogr. 2018, 163, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Biscaye, P.E.; Flagg, C.N.; Falkowski, P.G. The shelf edge exchange processes experiment, SEEP-II: An introduction to hypotheses, results and conclusions. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1994, 41, 231–252. [Google Scholar] [CrossRef]
- Daly, E.; Johnson, M.P.; Wilson, A.M.; Gerritsen, H.D.; Kiriakoulakis, K.; Allcock, A.L.; White, M. Bottom trawling at Whittard Canyon: Evidence for seabed modification, trawl plumes and food source heterogeneity. Prog. Oceanogr. 2018, 169, 227–240. [Google Scholar] [CrossRef]
- Bacon, M.P.; van der Loeff, M.M.R. Removal of thorium-234 by scavenging in the bottom nepheloid layer of the ocean. Earth Planet Sci. Lett. 1989, 92, 157–164. [Google Scholar] [CrossRef]
- Graf, G.; Rosenberg, R. Bioresuspension and biodeposition: A review. J. Mar. Syst. 1997, 11, 269–278. [Google Scholar] [CrossRef]
- Kolla, V.; Sullivan, L.; Streeter, S.S.; Langseth, M.G. Spreading of Antarctic Bottom Water and its effects on the floor of the Indian Ocean inferred from bottom-water potential temperature, turbidity, and sea-floor photography. Mar. Geol. 1976, 21, 171–189. [Google Scholar] [CrossRef]
- Spinrad, R.W.; Zaneveld, J.R.V. An analysis of the optical features of the near-bottom and bottom nepheloid layers in the area of the Scotian Rise. J. Geophys. Res.-Oceans 1982, 87, 9553–9561. [Google Scholar] [CrossRef]
- McCave, I.N. Particulate size spectra, behavior, and origin of nepheloid layers over the Nova Scotian continental rise. J. Geophys. Res.-Oceans 1983, 88, 7647–7666. [Google Scholar] [CrossRef]
- Gardner, W.D.; Sullivan, L.G. Benthic storms: Temporal variability in a deep-ocean nepheloid layer. Science 1981, 213, 329–331. [Google Scholar] [CrossRef]
- Cacchione, D.A.; Drake, D.E. Nepheloid layers and internal waves over continental shelves and slopes. Geo. Mar. Lett. 1986, 6, 147–152. [Google Scholar] [CrossRef]
- Gardner, W.D. Baltimore Canyon as a modern conduit of sediment to the deep sea. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 323–358. [Google Scholar] [CrossRef]
- Chronis, G.; Lykousis, V.; Georgopoulos, D.; Zervakis, V.; Stavrakakis, S.; Poulos, S. Suspended particulate matter and nepheloid layers over the southern margin of the Cretan Sea (NE Mediterranean): Seasonal distribution and dynamics. Prog. Oceanogr. 2000, 46, 163–185. [Google Scholar] [CrossRef]
- Peacock, T.; Ouillon, R. The Fluid Mechanics of Deep-Sea Mining. Annu. Rev. Fluid. Mech. 2023, 55, 403–430. [Google Scholar] [CrossRef]
- Rebesco, M. Contourites. In Encyclopedia of Geology; Alderton, D., Elias, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2005; Volume 4, pp. 513–527. [Google Scholar]
- Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.; Biscaye, P.E. Global comparison of benthic nepheloid layers based on 52 years of nephelometer and transmissometer measurements. Prog. Oceanogr. 2018, 168, 100–111. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, Y.; Zhang, X.; Zhang, Y.; Zhang, M. Formation mechanisms and characteristics of the marine nepheloid layer: A review. Water 2022, 14, 678. [Google Scholar] [CrossRef]
- Jahnke, R.A.; Reimers, C.; Craven, D.B. Intensification of recycling of organic matter at the sea floor near ocean margins. Nature 1990, 348, 50–54. [Google Scholar] [CrossRef]
- Azetsu-Scott, K.; Johnson, B.D.; Petrie, B. An intermittent, intermediate nepheloid layer in Emerald Basin, Scotian Shelf. Cont. Shelf Res. 1995, 15, 281–293. [Google Scholar] [CrossRef]
- Pak, H.; Codispoti, L.; Zaneveld, J.R.V. On the intermediate particle maxima associated with oxygen-poor water off western South America. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1980, 27, 783–797. [Google Scholar] [CrossRef]
- McCave, I.N.; Hall, I.R.; Antia, A.N.; Chou, L.; Dehairs, F.; Lampitt, R.S.; Thomsen, L.; van Weering, T.C.E.; Wollast, R. Distribution, composition and flux of particulate material over the European margin at 47 degrees-50 degrees N. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 3107–3139. [Google Scholar] [CrossRef]
- Inthorn, M.; Wagner, T.; Scheeder, G.; Zabel, M. Lateral transport controls distribution, quality, and burial of organic matter along continental slopes in high-productivity areas. Geology 2006, 34, 205–208. [Google Scholar] [CrossRef]
- McPhee-Shaw, E.E.; Sternberg, R.W.; Mullenbach, B.; Ogston, A.S. Observations of intermediate nepheloid layers on the northern California continental margin. Cont. Shelf Res. 2004, 24, 693–720. [Google Scholar] [CrossRef]
- Boegman, L.; Stastna, M. Sediment Resuspension and Transport by Internal Solitary Waves. In Annual Review of Fluid Mechanics; Davis, S.H., Moin, P., Eds.; Annual Reviews; Palo Alto: Santa Clara, CA, USA, 2019; Volume 51, pp. 129–154. [Google Scholar]
- Mao, G.Z.; Huang, N.; Chen, L.; Wang, H.M. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Sci. Total Environ. 2018, 635, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Cooper, I.D. Bibliometrics basics. J. Med. Libr. Assoc. 2015, 103, 217–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Y.; Zhang, Z.W.; Managi, S. A bibliometric analysis on green finance: Current status, development, and future directions. Financ. Res. Lett. 2019, 29, 425–430. [Google Scholar] [CrossRef]
- Roig-Tierno, N.; Gonzalez-Cruz, T.F.; Llopis-Martinez, J. An overview of qualitative comparative analysis: A bibliometric analysis. J. Innov. Knowl. 2017, 2, 15–23. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Asadi, H.; Mostafavi, E. The productivity and characteristics of Iranian Biomedical Journal (IBJ): A scientometric analysis. Iran. Biomed. J. 2018, 22, 362–366. [Google Scholar]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Upadhyay, S.; Medhi, B. Impact of the impact factor in biomedical research: Its use and misuse. Singap. Med. J. 2009, 50, 752–755. [Google Scholar]
- McCave, I.; Manighetti, B.; Robinson, S. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 1995, 10, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Francois, R.; Frank, M.; van der Loeff, M.M.R.; Bacon, M.P. Th-230 normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 2004, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bruland, K.W.; Orians, K.J.; Cowen, J.P. Reactive trace-metals in the stratified central north Pacific. Geochim. Cosmochim. Acta 1994, 58, 3171–3182. [Google Scholar] [CrossRef]
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef]
- Hollister, C.D.; McCave, I.N. Sedimentation under deep-sea storms. Nature 1984, 309, 220–225. [Google Scholar] [CrossRef]
- Hollister, C.D.; Nowell, A.R.M. HEBBLE epilogue. Mar. Geol. 1991, 99, 445–460. [Google Scholar] [CrossRef]
- Richardson, M.J.; Gardner, W.D. Analysis of suspended-particle-size distributions over the Nova Scotian continental rise. Mar. Geol. 1985, 66, 189–203. [Google Scholar] [CrossRef]
- Richardson, M.J.; Weatherly, G.L.; Gardner, W.D. Benthic storms in the Argentine Basin. Deep Sea Res. Part II Top. Stud. Oceanogr. 1993, 40, 975–987. [Google Scholar] [CrossRef]
- Thomsen, L. Processes in the benthic boundary layer at continental margins and their implication for the benthic carbon cycle. J. Sea Res. 1999, 41, 73–86. [Google Scholar] [CrossRef]
- Berger, W.H.; Wefer, G. Export production-seasonality and intermittency, and paleoceanographic implications. Glob. Planet. Change 1990, 89, 245–254. [Google Scholar] [CrossRef]
- Baker, E.T. Temporal and spatial variability of the bottom nepheloid layer over a deep-sea fan. Mar. Geol. 1976, 21, 67–79. [Google Scholar] [CrossRef]
- Baker, E.T.; Lavelle, J.W. The effect of particle size on the light attenuation coefficient of natural suspensions. J. Geophys. Res.-Oceans 1984, 89, 8197–8203. [Google Scholar] [CrossRef]
- Du, X.Q.; Liu, J.T. Particle dynamics of the surface, intermediate, and benthic nepheloid layers under contrasting conditions of summer monsoon and typhoon winds on the boundary between the Taiwan Strait and East China Sea. Prog. Oceanogr. 2017, 156, 130–144. [Google Scholar] [CrossRef]
- Mollenhauer, G.; Inthorn, M.; Vogt, T.; Zabel, M.; Damste, J.S.S.; Eglinton, T.I. Aging of marine organic matter during cross-shelf lateral transport in the Benguela upwelling system revealed by compound-specific radiocarbon dating. Geochem. Geophys. Geosyst. 2007, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Gardner, W.D.; Tucholke, B.E.; Richardson, M.J.; Biscaye, P.E. Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic. Mar. Geol. 2017, 385, 304–327. [Google Scholar] [CrossRef]
- Madron, X.D.; Ramondenc, S.; Berline, L.; Houpert, L.; Bosse, A.; Martini, S.; Guidi, L.; Conan, P.; Curtil, C.; Delsaut, N. Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection. J. Geophys. Res.-Oceans 2017, 122, 2291–2318. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Raine, R.; Mohn, C.; White, M. Nepheloid layer distribution in the Whittard Canyon, NE Atlantic Margin. Mar. Geol. 2015, 367, 130–142. [Google Scholar] [CrossRef]
Rank | Institution | Country | Number of Publications | Proportion of Publications (%) | H-Index |
---|---|---|---|---|---|
1 | Centre National De La Recherche Scientifique (CNRS) | France | 74 | 10.663 | 34 |
2 | UDICE-French Research Universities | France | 60 | 8.646 | 32 |
3 | Helmholtz Association | Germany | 50 | 7.205 | 27 |
4 | University of California | United States | 38 | 5.476 | 24 |
5 | Woods Hole Oceanographic Institution | United States | 38 | 5.476 | 20 |
6 | Utrecht University | Netherlands | 37 | 5.331 | 24 |
7 | Russian Academy of Sciences | Russia | 37 | 5.331 | 7 |
8 | Netherlands Institute for Sea Research (NIOZ) | Netherlands | 35 | 5.043 | 24 |
9 | Texas A&M University | United States | 35 | 5.043 | 22 |
10 | Consejo Superior de Investigaciones Cientificas (CSIC) | Spain | 34 | 4.899 | 19 |
11 | Shirshov Institute of Oceanology (IO RAS) | Russia | 33 | 4.755 | 6 |
12 | University of Washington | United States | 31 | 4.467 | 23 |
13 | National Institute for Earth Sciences Astronomy (INSU) | France | 31 | 4.467 | 21 |
14 | National Oceanic and Atmospheric Administration (NOAA) | United States | 29 | 4.179 | 16 |
15 | Universite of Perpignan | France | 28 | 4.035 | 18 |
Rank | Research Areas | Number of Publications | Proportion of Publications (%) * |
---|---|---|---|
1 | Oceanography | 416 | 59.94 |
2 | Geosciences Multidisciplinary | 175 | 25.21 |
3 | Marine Freshwater Biology | 107 | 15.42 |
4 | Environmental Sciences | 72 | 10.37 |
5 | Geochemistry and Geophysics | 44 | 6.34 |
6 | Limnology | 44 | 6.34 |
7 | Chemistry Multidisciplinary | 27 | 3.89 |
8 | Meteorology Atmospheric Sciences | 24 | 3.46 |
9 | Paleontology | 24 | 3.46 |
10 | Geography Physical | 20 | 2.88 |
11 | Multidisciplinary Sciences | 20 | 2.88 |
12 | Water Resources | 16 | 2.31 |
13 | Physics Fluids Plasmas | 15 | 2.16 |
14 | Mechanics | 11 | 1.59 |
15 | Fisheries | 10 | 1.44 |
Rank | Publication Sources | H-Index | IF | Number of Citations | Publish Year Started | Number of Publications | Proportion of Publications (%) * |
---|---|---|---|---|---|---|---|
1 | Mar. Geol. | 416 | 3.627 | 2779 | 1991 | 61 | 8.79 |
2 | Deep-Sea Res. Part II-Top. Stud. Oceanogr. | 175 | 2.887 | 2217 | 1993 | 48 | 6.92 |
3 | Cont. Shelf Res. | 107 | 2.629 | 1963 | 1990 | 48 | 6.92 |
4 | Deep-Sea Res. Part I-Oceanogr. Res. Pap. | 72 | 3.101 | 1630 | 1994 | 42 | 6.05 |
5 | Prog. Oceanogr. | 44 | 4.416 | 1244 | 1992 | 36 | 5.19 |
6 | J. Geophys. Res.-Oceans | 44 | 3.938 | 918 | 1993 | 33 | 4.76 |
7 | Mar. Chem. | 27 | 3.994 | 567 | 1991 | 22 | 0.29 |
8 | J. Mar. Syst. | 24 | 3.010 | 806 | 1992 | 23 | 3.31 |
9 | Limnol. Oceanogr. | 24 | 5.019 | 1201 | 1993 | 15 | 2.16 |
10 | Earth Planet. Sci. Lett. | 20 | 5.785 | 524 | 1992 | 11 | 1.59 |
11 | J. Gt. Lakes Res. | 20 | 3.032 | 402 | 1991 | 22 | 3.17 |
12 | Biogeosciences | 16 | 5.092 | 272 | 2007 | 15 | 2.16 |
13 | Paleoceanography | 15 | 3.313 | 956 | 1993 | 8 | 1.15 |
14 | Estuar. Coast. Shelf Sci. | 11 | 3.229 | 341 | 1993 | 9 | 1.30 |
15 | Geochim. Cosmochim. Acta | 10 | 5.921 | 528 | 1991 | 7 | 1.01 |
Rank | Title | Authors | Year | Source | Citations |
---|---|---|---|---|---|
1 | Sortable silt and fine sediment size/composition slicing-parameters for paleocurrent speed and paleoceanography | Mccave, I. N., Manighetti, B., Robinson, S. G. | 1995 | Paleoceanography | 445 |
2 | Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration | Babin, M., Morel, A., Fournier-Sicre, V., et al. | 2003 | Limnol. Oceanogr. | 435 |
3 | Reactive trace-metals in the stratified central north pacific | Bruland, K. W., Orians, K. J., Cowen, J. P. | 1994 | Geochim. Cosmochim. Acta | 300 |
4 | Th-230 normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary | Francois, R., Frank, M., Van Der Loeff, M. M. R., et al. | 2004 | Paleoceanography | 246 |
5 | Bioresuspension and biodeposition: A review | Graf, G., Rosenberg, R. | 1997 | J. Mar. Syst. | 233 |
6 | Sediment trap fluxes and benthic recycling of organic-carbon, polycyclic aromatic-hydrocarbons, and polychlorobiphenyl congeners in lake-superior | Baker, J. E., Eisenreich, S. J., Eadie, B. J. | 1991 | Environ. Sci. Technol. | 224 |
7 | The oxygen minimum zone in the Arabian Sea during 1995 | Morrison, J. M., Codispoti, L. A., Smith, S. L., et al. | 1999 | Deep-Sea Res. Part II-Top. Stud. Oceanogr. | 212 |
8 | Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, Ne Atlantic Ocean | Mienis, F., De Stigter, H. C., White, M., et al. | 2007 | Deep-Sea Res. Part I-Oceanogr. Res. Pap. | 195 |
9 | Internal waves, an under-explored source of turbulence events in the sedimentary record | Pomar, L., Morsilli, M., Hallock, P., et al. | 2012 | Earth-Sci. Rev. | 186 |
10 | The distribution of Fe in the Antarctic Circumpolar Current | Loscher, B. M., Debaar, H. J. W., Dejong, J. T. M., et al. | 1997 | Deep-Sea Res. Part II-Top. Stud. Oceanogr. | 175 |
Keywords | Year | Strength | Begin | End | 1990–2022 |
---|---|---|---|---|---|
particle | 1990 | 3.58 | 1990 | 1998 | ▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
sediment | 1990 | 10.76 | 1998 | 2007 | ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
continental margin | 1992 | 8.38 | 1998 | 2003 | ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
ocean | 1990 | 7.05 | 1998 | 2001 | ▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
transport | 1991 | 6.41 | 1998 | 2009 | ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
shelf | 1990 | 4.65 | 1998 | 2000 | ▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
carbon | 1991 | 4.99 | 1999 | 2005 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
benthic boundary layer | 1992 | 4.97 | 2000 | 2008 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
suspended sediment | 1993 | 4.56 | 2001 | 2006 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
lateral transport | 2002 | 3.72 | 2002 | 2006 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
resuspension | 1991 | 3.95 | 2004 | 2006 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
suspended particulate matter | 1990 | 3.57 | 2004 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
variability | 1992 | 4.66 | 2005 | 2009 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
current | 1994 | 4.1 | 2012 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂ |
submarine canyon | 1990 | 8.19 | 2013 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂ |
internal wave | 2001 | 5.33 | 2013 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂ |
sediment resuspension | 1992 | 9.24 | 2014 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃ |
organic matter | 1991 | 4.77 | 2015 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂ |
organic carbon | 1990 | 3.93 | 2016 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂ |
benthic nepheloid layer | 1997 | 3.96 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Liu, F.; Li, Z.; Shan, H.; Liu, H.; Quan, Y.; Zhou, Z.; Tan, Z.; Jia, Y. Global Trends and Prospects of Nepheloid Layers: A Comprehensive Bibliometric Review. Water 2023, 15, 1067. https://doi.org/10.3390/w15061067
Chen T, Liu F, Li Z, Shan H, Liu H, Quan Y, Zhou Z, Tan Z, Jia Y. Global Trends and Prospects of Nepheloid Layers: A Comprehensive Bibliometric Review. Water. 2023; 15(6):1067. https://doi.org/10.3390/w15061067
Chicago/Turabian StyleChen, Tian, Fei Liu, Zhenghui Li, Hongxian Shan, Hanlu Liu, Yongzheng Quan, Zhenhua Zhou, Zhan Tan, and Yonggang Jia. 2023. "Global Trends and Prospects of Nepheloid Layers: A Comprehensive Bibliometric Review" Water 15, no. 6: 1067. https://doi.org/10.3390/w15061067