Mapping of Areas Vulnerable to Flash Floods by Means of Morphometric Analysis with Weighting Criteria Applied
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Morphometric Parameters
2.3. Data Used
2.4. Methodology
2.4.1. Extraction of Drainage Network and Sub-Basin Delineation
2.4.2. Morphometric Analysis
2.4.3. Preliminary Ranking of Sub-Basin Priority
2.4.4. Weighted Sum Analysis and Final Ranking
3. Results and Discussion
3.1. Morphometric Analysis of the Basin
3.2. Assignment of Preliminary Sub-Basin Priority Rankings
3.3. Final Ranking Using Weighted Sum Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisht, S.; Chaudhry, S.; Sharma, S.; Soni, S. Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sens. Appl. Soc. Environ. 2018, 12, 35–47. [Google Scholar] [CrossRef]
- Cahyono, C.; Adidarma, W.K. Influence analysis of peak rate factor in the flood events’ calibration process using HEC-HMS. Model. Earth Syst. Environ. 2019, 5, 1705–1722. [Google Scholar] [CrossRef]
- Teng, F.; Huang, W.; Ginis, I. Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Nat. Hazards 2018, 91, 179–199. [Google Scholar] [CrossRef]
- Wang, N.; Lombardo, L.; Gariano, S.L.; Cheng, W.; Liu, C.; Xiong, J.; Wang, R. Using satellite rainfall products to assess the triggering conditions for hydro-morphological processes in different geomorphological settings in China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102350. [Google Scholar] [CrossRef]
- Prakash, K.; Rawat, D.; Singh, S.; Chaubey, K.; Kanhaiya, S.; Mohanty, T. Morphometric analysis using SRTM and GIS in synergy with depiction: A case study of the Karmanasa River basin, North central India. Appl. Water Sci. 2019, 9, 13. [Google Scholar] [CrossRef]
- Perucca, L.P.; Esper Angilieri, Y. Morphometric characterization of del Molle Basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quat. Int. 2011, 233, 81–86. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, P.; Mishra, V.N.; Singh, A.; Sajan, V.; Shahi, A.P. Geospatial approach for quantitative drainage morphometric analysis of Varuna river basin, India. J. Landsc. Ecol. 2019, 12, 1–25. [Google Scholar] [CrossRef]
- Rai, P.K.; Chandel, R.S.; Mishra, V.N.; Singh, P. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Appl. Water Sci. 2018, 8, 15. [Google Scholar] [CrossRef]
- Aher, P.; Adinarayana, J.; Gorantiwar, S. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. J. Hydrol. 2014, 511, 850–860. [Google Scholar] [CrossRef]
- Shivhare, V.; Gupta, C.; Mallick, J.; Singh, C.K. Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters. Nat. Hazards 2022, 110, 545–561. [Google Scholar] [CrossRef]
- Abdeta, G.C.; Tesemma, A.B.; Tura, A.L.; Atlabachew, G.H. Morphometric analysis for prioritizing sub-watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Appl. Water Sci. 2020, 10, 158. [Google Scholar] [CrossRef]
- Waiyasusri, K.; Chotpantarat, S. Watershed Prioritization of Kaeng Lawa Sub-Watershed, Khon Kaen Province Using the Morphometric and Land-Use Analysis: A Case Study of Heavy Flooding Caused by Tropical Storm Podul. Water 2020, 12, 1570. [Google Scholar] [CrossRef]
- Ahirwar, R.; Malik, M.S.; Shukla, J.P. Prioritization of Sub-Watersheds for Soil and Water Conservation in Parts of Narmada River through Morphometric Analysis Using Remote Sensing and GIS. J. Geol. Soc. India 2019, 94, 515–524. [Google Scholar] [CrossRef]
- Anees, M.T.; Abdullah, K.; Nawawi, M.; Rahman, N.N.N.A.; Ismail, A.Z.; Syakir, M.; Abdul Kadir, V. Prioritization of Flood Vulnerability Zones Using Remote Sensing and GIS for Hydrological Modelling. Irrig. Drain. 2019, 68, 176–190. [Google Scholar] [CrossRef]
- Chauhan, P.; Chauniyal, D.D.; Singh, N.; Tiwari, R.K. Quantitative geo-morphometric and land cover-based micro-watershed prioritization in the Tons river basin of the lesser Himalaya. Environ. Earth Sci. 2016, 75, 498. [Google Scholar] [CrossRef]
- Singh, G.; Pandey, A. Morphometric Characterization and Flash Flood Zonation of a Mountainous Catchment Using Weighted Sum Approach. In Geospatial Technologies for Land and Water Resources Management; Pandey, A., Chowdary, V.M., Behera, M.D., Singh, V.P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 409–428. [Google Scholar] [CrossRef]
- El-Fakharany, M.A.; Hegazy, M.N.; Mansour, N.M.; Abdo, A.M. Flash flood hazard assessment and prioritization of sub-watersheds in Heliopolis basin, East Cairo, Egypt. Arab. J. Geosci. 2021, 14, 1693. [Google Scholar] [CrossRef]
- Jothimani, M.; Abebe, V.; Dawit, Z. Mapping of soil erosion-prone sub-watersheds through drainage morphometric analysis and weighted sum approach: A case study of the Kulfo River basin, Rift valley, Arba Minch, Southern Ethiopia. Model. Earth Syst. Environ. 2020, 6, 2377–2389. [Google Scholar] [CrossRef]
- Mahmood, S.; Rahman, A. Flash flood susceptibility modeling using geo-morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Environ. Earth Sci. 2019, 78, 43. [Google Scholar] [CrossRef]
- Mahmood, S.; Rahman, A. Flash flood susceptibility modelling using geomorphometric approach in the Ushairy Basin, eastern Hindu Kush. J. Earth Syst. Sci. 2019, 128, 97. [Google Scholar] [CrossRef]
- Khan, I.; Bali, R.; Agarwal, K.K.; Kumar, D.; Singh, S.K. Morphometric Analysis of Parvati Basin, NW Himalaya: A Remote Sensing and GIS Based Approach. J. Geol. Soc. India 2021, 97, 165–172. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kandpal, H. Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arab. J. Geosci. 2019, 12, 118. [Google Scholar] [CrossRef]
- Sakthivel, R.; Jawahar Raj, N.; Sivasankar, V.; Akhila, P.; Omine, K. Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Appl. Water Sci. 2019, 9, 24. [Google Scholar] [CrossRef]
- Prasad, R.N.; Pani, P. Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model and snyder’s synthetic unit hydrograph. Model. Earth Syst. Environ. 2017, 3, 1491–1502. [Google Scholar] [CrossRef]
- Prakash, K.; Mohanty, T.; Singh, S.; Chaubey, K.; Prakash, P. Drainage morphometry of the Dhasan river basin, Bundelkhand craton, central India using remote sensing and GIS techniques. J. Geomat. 2016, 10, 122–132. [Google Scholar]
- Kumar, A.; Singh, S.; Pramanik, M.; Chaudhary, S.; Maurya, A.K.; Kumar, M. Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach. Environ. Dev. Sustain. 2022, 24, 3723–3761. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zaman, M.N.; Biswas, P.K. Optimization of significant morphometric parameters and sub-watershed prioritization using PCA and PCA-WSM for soil conservation: A case study in dharla River watershed, Bangladesh. Model. Earth Syst. Environ. 2022, 8, 2661–2674. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kushwaha, D.P.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Yaseen, Z.M. The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India. Water 2019, 11, 1505–1519. [Google Scholar] [CrossRef]
- Meshram, S.G.; Sharma, S.K. Prioritization of watershed through morphometric parameters: A PCA-based approach. Appl. Water Sci. 2017, 7, 1505–1519. [Google Scholar] [CrossRef]
- Meshram, S.G.; Alvandi, E.; Meshram, C.; Kahya, E.; Fadhil Al-Quraishi, A.M. Application of SAW and TOPSIS in Prioritizing Watersheds. Water Resour. Manag. 2020, 34, 715–732. [Google Scholar] [CrossRef]
- CARE-Perú. Modelización Hidrológica de la Cuenca Cañete y Evaluación del Impacto del Cambio Climático; CARE-Perú: Lima, Peru, 2018. [Google Scholar]
- Portuguez-Maurtua, M. Aplicación de la geoestadística a modelos hidrológicos en la cuenca del río Cañete. Master’s Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2017. [Google Scholar]
- Arulbalaji, P.; Padmalal, D. Sub-watershed Prioritization Based on Drainage Morphometric Analysis: A Case Study of Cauvery River Basin in South India. J. Geol. Soc. India 2020, 95, 25–35. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Appl. Water Sci. 2014, 4, 51–61. [Google Scholar] [CrossRef]
- Odiji, C.A.; Aderoju, O.M.; Eta, J.B.; Shehu, I.; Mai-Bukar, A.; Onuoha, H. Morphometric analysis and prioritization of upper benue river watershed. Appl. Water Sci. 2021, 11, 41. [Google Scholar] [CrossRef]
- Strahler, A. Quantitative Geomorphology of Drainage Basin and Channel Networks. In Handbook of Applied Hydrology; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Nooka Ratnam, K.; Srivastava, Y.; Venkateswara Rao, V.; Amminedu, E.; Murthy, K. Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis remote sensing and GIS perspective. J. Indian Soc. Remote Sens. 2005, 33, 25–38. [Google Scholar] [CrossRef]
- Sreedevi, P.D.; Sreekanth, P.D.; Khan, H.H.; Ahmed, S. Drainage morphometry and its influence on hydrology in an semi arid region: Using SRTM data and GIS. Environ. Earth Sci. 2013, 70, 839–848. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Miller, V. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area Virginia and Tennessee. J. Geol. 1953, 65, 112–113. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 5326–5350. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 18–27. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Konrad Banachewicz, L.M. The Kaggle Book; Packt: Birmingham, UK, 2022; ISBN 9781801817479. [Google Scholar]
- Ismail, M.; Singh, H.; Farooq, I.; Yousuf, N. Quantitative morphometric analysis of Veshav and Rembi Ara watersheds, India, using quantum GIS. Appl. Geomat. 2022, 14, 119–134. [Google Scholar] [CrossRef]
- Basnet, K.; Paudel, R.C.; Sherchan, B. Analysis of watersheds in Gandaki province, Nepal using QGIS. Tech. J. 2019, 1, 16–28. [Google Scholar] [CrossRef]
- Alencar da Silva Alves, K.M.; Parodi Dávila, M.C.; Zimmermann García, E.D.; Rodrigues de Lira, D.; De Araujo Monteiro, K. Caracterización morfométrica de la cuenca del Salado Bajo, Región de Atacama, Chile. Investig. Geográficas 2021, 62, 90–105. [Google Scholar] [CrossRef]
- Gayen, S.; Bhunia, G.S.; Shit, P.K. Morphometric Analysis of Kangshabati-Darkeswar Interfluves Area in West Bengal, India using ASTER DEM and GIS Techniques. 2013. Available online: http://111.93.204.14:8080/xmlui/handle/123456789/582 (accessed on 30 November 2022).
Item | Morphometric Parameter | Unit | Formula and Definition | Reference |
---|---|---|---|---|
1 | Stream order (u) | Dimensionless | Hierarchical range | [37] |
2 | Stream length (Lᵤ) | Km | Stream length | [38] |
3 | Basin length (Lb) | Km | Lb = 1.312 × A0.568 Lb = basin length (km) A = basin area (km2). | [39,40] |
Item | Morphometric Parameter | Unit | Formula and Definition | Reference |
---|---|---|---|---|
1 | Basin area (A) | Km2 | Estimated in GIS | |
2 | Basin perimeter (P) | Km | Estimated in GIS | [41] |
3 | Stream frequency or flow frequency (Fs) | ) | Fs = ΣNᵤ/A Nᵤ = total number of stream segments of order “u” and A = basin area (km2) | [42] |
4 | Drainage density (Dd) | ) | Dd = Σ L/A L = total stream length; A = basin area | [42] |
5 | Form factor (Ff) | Dimensionless | Ff = A/ A = basin area = basin length | [42] |
6 | Circularity ratio (Cr) | Dimensionless | Cr = A = basin area (km2) P = basin perimeter (km) | [43] |
7 | Texture ratio (Tr) | Dimensionless | Tr = = total number of first order streams P = basin perimeter | [38] |
8 | Elongation ratio (Er) | Dimensionless | Er = A = basin area basin length | [41] |
9 | Shape factor (Sf) | Dimensionless | Sf/A | [42] |
Item | Morphometric Parameter | Unit | Formula and Definition | Reference |
---|---|---|---|---|
1 | Basin relief (R) | Meters | R = H − h R = basin relief, H = maximum elevation in meters H = minimum elevation in meters | [41] |
2 | ) | Dimensionless | = H/ = relief ratio, H = basin relief, = basin length | [41] |
3 | Average slope (As) | Degrees | Estimated in GIS |
Sub-Basin | Perimeter (km) | Area (km2) | Length (km) |
---|---|---|---|
SB-1 | 197.09 | 943.30 | 64.20 |
SB-2 | 158.45 | 448.58 | 42.09 |
SB-3 | 137.14 | 364.68 | 37.42 |
SB-4 | 145.79 | 419.96 | 40.54 |
SB-5 | 162.71 | 586.76 | 49.03 |
SB-6 | 118.83 | 324.56 | 35.02 |
SB-7 | 183.65 | 596.71 | 49.50 |
SB-8 | 204.97 | 616.61 | 50.43 |
SB-9 | 30.01 | 31.49 | 9.31 |
SB-10 | 167.51 | 517.64 | 45.66 |
SB-11 | 281.88 | 1175.47 | 72.75 |
Stream Order (u) | SB-1 | SB-2 | SB-3 | SB-4 | SB-5 | SB-6 | SB-7 | SB-8 | SB-9 | SB-10 | SB-11 |
---|---|---|---|---|---|---|---|---|---|---|---|
1st order | 15 | 8 | 6 | 5 | 7 | 4 | 10 | 10 | 0 | 8 | 24 |
2nd order | 5 | 6 | 2 | 4 | 1 | 3 | 4 | 5 | 0 | 3 | 8 |
3rd order | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 |
4th order | 0 | 0 | 5 | 0 | 7 | 0 | 7 | 0 | 1 | 0 | 17 |
Total | 29 | 15 | 13 | 9 | 15 | 7 | 21 | 19 | 1 | 15 | 49 |
Stream Order (u) | SB-1 (km) | SB-2 (km) | SB-3 (km) | SB-4 (km) | SB-5 (km) | SB-6 (km) | SB-7 (km) | SB-8 (km) | SB-9 (km) | SB-10 (km) | SB-11 (km) |
---|---|---|---|---|---|---|---|---|---|---|---|
1st order | 88.01 | 35.04 | 32.84 | 36.10 | 66.93 | 29.11 | 41.07 | 54.75 | 0.00 | 59.13 | 128.42 |
2nd order | 31.80 | 29.39 | 11.92 | 30.52 | 7.66 | 22.31 | 29.79 | 17.16 | 0.00 | 14.11 | 39.91 |
3rd order | 54.55 | 10.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 41.79 | 0.00 | 28.51 | 0.00 |
4th order | 0.00 | 0.00 | 19.35 | 0.00 | 36.67 | 0.00 | 29.95 | 0.00 | 7.68 | 0.00 | 78.86 |
Total | 174.36 | 74.86 | 64.11 | 66.62 | 111.26 | 51.43 | 100.80 | 113.70 | 7.68 | 101.74 | 247.19 |
Sub-Basin | Drainage Density (Dd) | Stream Frequency (Fs) | Circularity Ratio (Cr) | Texture Ratio (Tr) | Elongation Ratio (Er) | Form Factor (Ff) | Shape Factor (Sf) |
---|---|---|---|---|---|---|---|
SB-1 | 0.185 | 0.031 | 0.305 | 0.076 | 0.540 | 0.229 | 4.369 |
SB-2 | 0.167 | 0.033 | 0.225 | 0.050 | 0.568 | 0.253 | 3.949 |
SB-3 | 0.176 | 0.036 | 0.244 | 0.044 | 0.576 | 0.260 | 3.840 |
SB-4 | 0.159 | 0.021 | 0.248 | 0.034 | 0.570 | 0.255 | 3.914 |
SB-5 | 0.190 | 0.026 | 0.279 | 0.043 | 0.558 | 0.244 | 4.096 |
SB-6 | 0.158 | 0.022 | 0.289 | 0.034 | 0.580 | 0.265 | 3.779 |
SB-7 | 0.169 | 0.035 | 0.222 | 0.054 | 0.557 | 0.244 | 4.106 |
SB-8 | 0.184 | 0.031 | 0.184 | 0.049 | 0.556 | 0.242 | 4.124 |
SB-9 | 0.244 | 0.032 | 0.439 | 0.000 | 0.680 | 0.363 | 2.752 |
SB-10 | 0.197 | 0.029 | 0.232 | 0.048 | 0.562 | 0.248 | 4.027 |
SB-11 | 0.210 | 0.042 | 0.186 | 0.085 | 0.532 | 0.222 | 4.502 |
Sub-Basin | Basin Relief (R) (m) | Relief Ratio (Rr) | Average Slope (As) (°) |
---|---|---|---|
SB-1 | 2906.00 | 0.045 | 22.590 |
SB-2 | 2061.00 | 0.049 | 20.816 |
SB-3 | 3287.00 | 0.088 | 27.833 |
SB-4 | 2844.00 | 0.070 | 22.800 |
SB-5 | 4127.00 | 0.084 | 27.959 |
SB-6 | 3309.00 | 0.094 | 19.485 |
SB-7 | 4063.00 | 0.082 | 27.023 |
SB-8 | 4156.00 | 0.082 | 22.011 |
SB-9 | 2405.00 | 0.258 | 34.042 |
SB-10 | 3963.00 | 0.087 | 21.225 |
SB-11 | 4420.00 | 0.061 | 23.243 |
Sub-Basin | R | Rr | Dd | Fs | Cr | Tr | As | Er | Ff | Sf |
---|---|---|---|---|---|---|---|---|---|---|
SB-1 | 8 | 11 | 5 | 7 | 2 | 2 | 7 | 2 | 2 | 10 |
SB-2 | 11 | 10 | 9 | 4 | 8 | 4 | 10 | 7 | 7 | 5 |
SB-3 | 7 | 3 | 7 | 2 | 6 | 7 | 3 | 9 | 9 | 3 |
SB-4 | 9 | 8 | 10 | 11 | 5 | 9 | 6 | 8 | 8 | 4 |
SB-5 | 3 | 5 | 4 | 9 | 4 | 8 | 2 | 5 | 5 | 7 |
SB-6 | 6 | 2 | 11 | 10 | 3 | 10 | 11 | 10 | 10 | 2 |
SB-7 | 4 | 7 | 8 | 3 | 9 | 3 | 4 | 4 | 4 | 8 |
SB-8 | 2 | 6 | 6 | 6 | 11 | 5 | 8 | 3 | 3 | 9 |
SB-9 | 10 | 1 | 1 | 5 | 1 | 11 | 1 | 11 | 11 | 1 |
SB-10 | 5 | 4 | 3 | 8 | 7 | 6 | 9 | 6 | 6 | 6 |
SB-11 | 1 | 9 | 2 | 1 | 10 | 1 | 5 | 1 | 1 | 11 |
R | Rr | Dd | Fs | Cr | Tr | As | Er | Ff | Sf | |
---|---|---|---|---|---|---|---|---|---|---|
R | 1.000 | 0.009 | 0.282 | 0.173 | −0.564 | 0.373 | 0.082 | 0.636 | 0.636 | −0.636 |
Rr | 0.009 | 1.000 | 0.136 | −0.155 | 0.345 | −0.782 | 0.255 | −0.709 | −0.709 | 0.709 |
Dd | 0.282 | 0.136 | 1.000 | 0.327 | 0.064 | 0.145 | 0.518 | 0.282 | 0.282 | −0.282 |
Fs | 0.173 | −0.155 | 0.327 | 1.000 | −0.482 | 0.564 | 0.318 | 0.282 | 0.282 | −0.282 |
Cr | −0.564 | 0.345 | 0.064 | −0.482 | 1.000 | −0.600 | 0.227 | −0.545 | −0.545 | 0.545 |
Tr | 0.373 | −0.782 | 0.145 | 0.564 | −0.600 | 1.000 | −0.173 | 0.873 | 0.873 | −0.873 |
As | 0.082 | 0.255 | 0.518 | 0.318 | 0.227 | −0.173 | 1.000 | −0.064 | −0.064 | 0.064 |
Er | 0.636 | −0.709 | 0.282 | 0.282 | −0.545 | 0.873 | −0.064 | 1.000 | 1.000 | −1.000 |
Ff | 0.636 | −0.709 | 0.282 | 0.282 | −0.545 | 0.873 | −0.064 | 1.000 | 1.000 | −1.000 |
Sf | −0.636 | 0.709 | −0.282 | −0.282 | 0.545 | −0.873 | 0.064 | −1.000 | −1.000 | 1.000 |
Sum | 1.991 | 0.100 | 2.755 | 2.027 | −0.555 | 1.400 | 2.164 | 1.755 | 1.755 | −1.755 |
Weight (w) | 0.171 | 0.009 | 0.237 | 0.174 | −0.048 | 0.120 | 0.186 | 0.151 | 0.151 | −0.151 |
Sub-Basin | R | Rr | Dd | Fs | Cr | Tr | As | Er | Ff | Sf |
---|---|---|---|---|---|---|---|---|---|---|
SB-1 | 1.37 | 0.09 | 1.18 | 1.22 | −0.10 | 0.24 | 1.30 | 0.30 | 0.30 | −1.51 |
SB-2 | 1.88 | 0.09 | 2.13 | 0.70 | −0.38 | 0.48 | 1.86 | 1.06 | 1.06 | −0.75 |
SB-3 | 1.20 | 0.03 | 1.66 | 0.35 | −0.29 | 0.84 | 0.56 | 1.36 | 1.36 | −0.45 |
SB-4 | 1.54 | 0.07 | 2.37 | 1.92 | −0.24 | 1.08 | 1.12 | 1.21 | 1.21 | −0.60 |
SB-5 | 0.51 | 0.04 | 0.95 | 1.57 | −0.19 | 0.96 | 0.37 | 0.75 | 0.75 | −1.06 |
SB-6 | 1.03 | 0.02 | 2.60 | 1.74 | −0.14 | 1.20 | 2.05 | 1.51 | 1.51 | −0.30 |
SB-7 | 0.68 | 0.06 | 1.89 | 0.52 | −0.43 | 0.36 | 0.74 | 0.60 | 0.60 | −1.21 |
SB-8 | 0.34 | 0.05 | 1.42 | 1.05 | −0.52 | 0.60 | 1.49 | 0.45 | 0.45 | −1.36 |
SB-9 | 1.71 | 0.01 | 0.24 | 0.87 | −0.05 | 1.32 | 0.19 | 1.66 | 1.66 | −0.15 |
SB-10 | 0.86 | 0.03 | 0.71 | 1.39 | −0.33 | 0.72 | 1.67 | 0.90 | 0.90 | −0.90 |
SB-11 | 0.17 | 0.08 | 0.47 | 0.17 | −0.48 | 0.12 | 0.93 | 0.15 | 0.15 | −1.66 |
Sub-Basin | Priority | Priority Level | Priority Type | Area (%) | ||
---|---|---|---|---|---|---|
SB-1 | 5.31 | −0.90 | 6.22 | 11 | Medium | 15.65 |
SB-2 | 6.75 | 1.36 | 5.40 | 8 | Medium | 7.44 |
SB-3 | 4.34 | 2.26 | 2.08 | 2 | Very high | 6.05 |
SB-4 | 7.85 | 1.81 | 6.04 | 10 | Medium | 6.97 |
SB-5 | 4.21 | 0.45 | 3.76 | 4 | High | 9.74 |
SB-6 | 8.50 | 2.71 | 5.78 | 9 | Medium | 5.39 |
SB-7 | 3.84 | 0.00 | 3.84 | 5 | High | 9.90 |
SB-8 | 4.42 | −0.45 | 4.88 | 7 | High | 10.23 |
SB-9 | 4.29 | 3.17 | 1.12 | 1 | Very high | 0.52 |
SB-10 | 5.06 | 0.90 | 4.15 | 6 | High | 8.59 |
SB-11 | 1.47 | −1.36 | 2.83 | 3 | Very high | 19.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portuguez-Maurtua, M.; Arumi, J.L.; Stehr, A.; Lagos, O.; Chávarri-Velarde, E.; Rivera-Ruiz, D. Mapping of Areas Vulnerable to Flash Floods by Means of Morphometric Analysis with Weighting Criteria Applied. Water 2023, 15, 1053. https://doi.org/10.3390/w15061053
Portuguez-Maurtua M, Arumi JL, Stehr A, Lagos O, Chávarri-Velarde E, Rivera-Ruiz D. Mapping of Areas Vulnerable to Flash Floods by Means of Morphometric Analysis with Weighting Criteria Applied. Water. 2023; 15(6):1053. https://doi.org/10.3390/w15061053
Chicago/Turabian StylePortuguez-Maurtua, Marcelo, Jose Luis Arumi, Alejandra Stehr, Octavio Lagos, Eduardo Chávarri-Velarde, and Daniela Rivera-Ruiz. 2023. "Mapping of Areas Vulnerable to Flash Floods by Means of Morphometric Analysis with Weighting Criteria Applied" Water 15, no. 6: 1053. https://doi.org/10.3390/w15061053
APA StylePortuguez-Maurtua, M., Arumi, J. L., Stehr, A., Lagos, O., Chávarri-Velarde, E., & Rivera-Ruiz, D. (2023). Mapping of Areas Vulnerable to Flash Floods by Means of Morphometric Analysis with Weighting Criteria Applied. Water, 15(6), 1053. https://doi.org/10.3390/w15061053