Role of Gypsum in Conserving Soil Moisture Macronutrients Uptake and Improving Wheat Yield in the Rainfed Area
Abstract
:1. Introduction
2. Material and Methods
2.1. Design of the Research Study
2.2. Basic Soil Properties of the Study Area
2.3. Soil Physicochemical Analysis Post Gypsum Application
2.4. Plant Analysis
2.5. Wheat Yield
2.6. Statistical Analysis
3. Results
3.1. Wheather Conditions and Soil Moisture
3.2. Soil pH and EC
3.3. Wheat Yield and Soil Moisture
3.4. Nutrient Uptake
4. Discussion
4.1. Effect of Gypsum on Soil Moisture Conservation in Rainfed Areas
4.2. Effect of Gypsum on Macronutrient Uptake in the Wheat Crop
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sumner, M.E.; Miller, W.P. Soil Crusting in Relation to Global Soil Degradation. Am. J. Altern. Agric. 1992, 7, 56–62. [Google Scholar] [CrossRef]
- Tongde, C.; Abbas, F.; Juying, J.; Ijaz, S.S.; Shoshan, A.; Ansar, M.; Hussain, Q.; Azad, M.N.; Ahmad, A. Investigation of Soil Erosion in Pothohar Plateau of Pakistan. Pak. J. Agric. Res. 2021, 34, 362–371. [Google Scholar] [CrossRef]
- GOP. Wheat: Economic Survey of Pakistan, 2014–2015. Ministry of Food, Agriculture and Livestock, Agriculture & Livestock Division (Economic Wing); Government of Pakistan: Islamabad, Pakistan, 2015. [Google Scholar]
- Abbas, F.; Zhu, Z.; An, S. Evaluating Aggregate Stability of Soils under Different Plant Species in Ziwuling Mountain Area Using Three Renowned Methods. Catena 2021, 207, 105616. [Google Scholar] [CrossRef]
- Fatima, B.; ul Hasan, F.; Choudhary, M.A. Cost Benefit/Effectiveness Analysis of Climate Change Adaptation in Potohar Region by Building Rainwater Harvesting Dams. In Proceedings of the 2019 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, 25–29 August 2019; pp. 1–7. [Google Scholar]
- Siddiqui, S.; Safi, M.W.A.; Tariq, A.; Rehman, N.U.; Haider, S.W. GIS Based Universal Soil Erosion Estimation in District Chakwal Punjab, Pakistan. Int. J. Econ. Environ. Geol. 2020, 11, 30–36. [Google Scholar] [CrossRef]
- Rafique, E.; Rashid, A.; Ryan, J.; Bhatti, A.U. Zinc Deficiency in Rainfed Wheat in Pakistan: Magnitude, Spatial Variability, Management, and Plant Analysis Diagnostic Norms. Commun. Soil Sci. Plant Anal. 2006, 37, 181–197. [Google Scholar] [CrossRef]
- Zewd, I.; Siban, M. The Effects of Alkalinity on Physical and Chemical Properties of Soil. J. Plant Biol. Agric. Sci. 2021, 3, 1–5. [Google Scholar]
- Rengasamy, P.; Greene, R.; Ford, G.W.; Mehanni, A.H. Identification of Dispersive Behavior and the Management of Red-Brown Earths. Aust. J. Soil Res. 1984, 22, 413–431. [Google Scholar] [CrossRef]
- Sparks, D.L. Environmental Soil Chemistry: An Overview, 2nd ed.; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 1–42. ISBN 978-0-12-656446-4. [Google Scholar]
- Bello, S.K.; Alayafi, A.H.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating Soil Salinity Stress with Gypsum and Bio-Organic Amendments: A Review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Liao, R.K.; Yang, P.L.; Ren, S.M.; Yi, H.; Zhou, B.; Zhou, Z. Effects of Typical Chemical Agents on Prevention of Non-Point-Source (NPS) Pollution in a Sloping Orchard. In Proceedings of the Advanced Materials Research; Trans Tech Publ: Schwyz, Switzerland, 2012; Volume 550, pp. 1168–1172. [Google Scholar]
- Fabrícia, A.; Ramos, S. Energia Ultrassônica Associada A Estabilidade De Agregados De Um Latossolo Sob Sistemas De Manejo; Revista Agrarian: Dourados, MS, Brasil, 2016. [Google Scholar]
- Kumar, A.; Saha, A. Effect of Polyacrylamide and Gypsum on Surface Runoff, Sediment Yield and Nutrient Losses from Steep Slopes. Agric. Water Manag. 2011, 98, 999–1004. [Google Scholar] [CrossRef]
- Schiavon, M.; Leinauer, B.; Serena, M.; Maier, B.; Sallenave, R. Plant Growth Regulator and Soil Surfactants’ Effects on Saline and Deficit Irrigated Warm-season Grasses: I. Turf Quality and Soil Moisture. Crop Sci. 2014, 54, 2815–2826. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, M.K. Role of Gypsum and Compost in Reclaiming Saline-Sodic Soils. J. Agric. Vet. Sci. 2012, 1, 30–38. [Google Scholar] [CrossRef]
- Rehman, O.U.; Rashid, M.; Alvi, S.; Kausar, R.; Khalid, R.; Iqbal, T. Prospects of Using Gypsum to Conserve Water and Improve Wheat Yield in Rainfed Aridisols. Biol. Sci. PJSIR 2013, 56, 11–17. [Google Scholar] [CrossRef]
- Zhang, D.; Du, G.; Chen, D.; Shi, G.; Rao, W.; Li, X.; Jiang, Y.; Liu, S.; Wang, D. Effect of Elemental Sulfur and Gypsum Application on the Bioavailability and Redistribution of Cadmium during Rice Growth. Sci. Total Environ. 2019, 657, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Fismes, J.; Vong, P.C.; Guckert, A.; Frossard, E. Influence of Sulfur on Apparent N-Use Efficiency, Yield and Quality of Oilseed Rape (Brassica napus L.) Grown on a Calcareous Soil. Eur. J. Agron. 2000, 12, 127–141. [Google Scholar] [CrossRef]
- Wu, R.; Boyd, C.E. Evaluation of Calcium Sulfate for Use in Aquaculture Ponds. Progress. Fish-Cult. 1990, 52, 26–31. [Google Scholar] [CrossRef]
- Amezketa, E.; Lafarga, R.A.; Pérez, P.; Bercero, A. Techniques for Controlling Soil Crusting and Its Effect on Corn Emergence and Production. Span. J. Agric. Res. 2003, 1, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil Structure and the Effect of Management Practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Rashmi, I.; Mina, B.L.; Kuldeep, K.; Ali, S.; Kumar, A.; Kala, S.; Singh, R.K. Gypsum-an Inexpensive, Effective Sulphur Source with Multitude Impact on Oilseed Production and Soil Quality—A Review. Agric. Rev. 2018, 39, 218–225. [Google Scholar]
- Dale Ritchey, K.; Feldhake, C.M.; Clark, R.B.; De Sousa, D.M.G. Improved Water and Nutrient Uptake from Subsurface Layers of Gypsum-amended Soils. Agric. Util. Urban Ind. By-Prod. 1995, 58, 157–181. [Google Scholar]
- Rao, S.S.; Shaktawat, M.S. Response of Organic Manure, Phosphorus and Gypsum to Nutrient Content and Uptake by Groundnut (Arachis hypogaea L.). Agropedology 2005, 15, 100–106. [Google Scholar]
- Kiani, S.; Malakouti, M.J.; Tabatabaei, S.J.; Kafi, M. Influence of Different NH4+/NO3- Ratios and Calcium Levels on Growth, Nutrients Concentration, and Quality of Rose Flower. Iran. J. Soil Res. 2009, 23, 23–33. [Google Scholar] [CrossRef]
- Eckert, D.J.; Martins, A.P.; Vian, A.L.; Pesini, G.; Alves, L.A.; Flores, J.P.M.; Filippi, D.; Tiecher, T.L.; Fink, J.R.; Bredemeier, C.; et al. Single Superphosphate Replacing Agricultural Gypsum: Short-Term Effect on Grain Yield and Soil Chemical Properties in Subtropical Soils under No-Tillage. Arch. Agron. Soil Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- Uddin, S.; Williams, S.W.; Aslam, N.; Fang, Y.; Parvin, S.; Rust, J.; van Zwieten, L.; Armstrong, R.; Tavakkoli, E. Ameliorating Alkaline Dispersive Subsoils with Organic Amendments: Are Productivity Responses Due to Nutrition or Improved Soil Structure? Plant Soil 2022, 480, 227–244. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Uddin, S.; Rengasamy, P.; McDonald, G.K. Field Applications of Gypsum Reduce pH and Improve Soil C in Highly Alkaline Soils in Southern Australia’s Dryland Cropping Region. Soil Use Manag. 2022, 38, 466–477. [Google Scholar] [CrossRef]
- Agered, Y.E. Bimrew Sendekie Belay Effects of Gypsum and Filter Cake on Saline-Sodic Soil and Yield and Yield Components of Wheat (Triticum Aestivum) at Amibara Area, Central Rift Valley, Ethiopia. Ph.D. Thesis, Haramaya University, Haramaya, Ethiopia, 2022. Available online: http://publication.eiar.gov.et:8080/xmlui/handle/123456789/3699 (accessed on 31 January 2023).
- Abdul Qadir, A.; Murtaza, G.; Zia-ur-Rehman, M.; Waraich, E.A. Application of Gypsum or Sulfuric Acid Improves Physiological Traits and Nutritional Status of Rice in Calcareous Saline-Sodic Soils. J. Soil Sci. Plant Nutr. 2022, 22, 1846–1858. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Bhardwaj, A.K. Regaining the Agricultural Potential of Sodic Soils and Improved Smallholder Food Security through Integration of Gypsum, Pressmud and Salt Tolerant Varieties. Agroecol. Sustain. Food Syst. 2022, 46, 410–431. [Google Scholar] [CrossRef]
- Jha, S.K.; Mishra, V.K.; Damodaran, T.; Singh, A.K.; Singh, Y.P.; Sharma, D.K. Does Conservation Tillage on Partially Reclaimed Sodic Soil Restore Land Degradation by Influencing Boron Dynamics, Bioavailability for Plant’s Uptake and Nutritional Security? Land Degrad. Dev. 2022, 33, 1260–1268. [Google Scholar] [CrossRef]
- Aboelsoud, H.M.; AbdelRahman, M.A.E.; Kheir, A.M.S.; Eid, M.S.M.; Ammar, K.A.; Khalifa, T.H.; Scopa, A. Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management. Land 2022, 11, 1041. [Google Scholar] [CrossRef]
- Dawar, K.; Khalil, Z.; Mian, I.A.; Khan, B.; Ali, S.; Rahi, A.A.; Tahir, M.S.; Ahmed, N.; Fahad, S.; Danish, S. Effects of Farmyard Manure and Different Phosphorus Inorganic Fertilizer Application Rates on Wheat Cultivation in Phosphorus-Deficient Soil. Sustainability 2022, 14, 9030. [Google Scholar] [CrossRef]
- Shamim, A.H.M.; Khan, M.H.R.; Akae, T. The Effectiveness of Sulfidic Materials as a Source of Sulfur Fertilizer for the Production of Rice in Two Sulfur Deficient Soils. Sonklanakarin J. Sci. Technol. 2010, 32, 643. [Google Scholar]
- Asif, M.; Akbar, G.; Khan, S.H.; Islam, Z.; Kalwar, S.A. Effect of sowing methods on wheat production in Potohar, Pakistan. Pak. J. Agric. Agric. Eng. Vet. Sci 2019, 35, 98–104. [Google Scholar]
- Day, P.R. Particle Fractionation and Particle-size Analysis. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 1965, 9, 545–567. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Warncke, D.; Brown, J.R. Potassium and Other Basic Cations. In Recommended Chemical Soil Test Procedures for the North Central Region; Missouri Agricultural Experiment Station: Columbia, MO, USA, 2011; Volume 1001, pp. 31–33. [Google Scholar]
- Hart, M.G.R. A Turbidimetric Method for Determining Elemental Sulphur. Analyst 1961, 86, 472–475. [Google Scholar] [CrossRef]
- Barrows, H.L.; Simpson, E.C. An EDTA Method for the Direct Routine Determination of Calcium and Magnesium in Soils and Plant Tissue. Soil Sci. Soc. Am. J. 1962, 26, 443–445. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14, ISBN 0891188258. [Google Scholar]
- Corwin, D.L.; Rhoades, J.D. An Improved Technique for Determining Soil Electrical Conductivity-depth Relations from above-Ground Electromagnetic Measurements. Soil Sci. Soc. Am. J. 1982, 46, 517–520. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil PH and Soil Acidity. Methods Soil Anal. Part 1996, 3, 475–490. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A. Mapping Zinc Fertility Of Soils Using Indicator Plants And Soil Analyses (Seed, Geostatistics, Hawaii, Colorado); University of Hawai’i: Manoa, HI, USA, 1986; ISBN 9798641510521. [Google Scholar]
- Winkleman, G.E.; Amin, R.; Rice, W.A.; Tahir, M.B. Methods Manual Soil Laboratory; BARD Project; PARC: Islamabad, Pakistan, 1990. [Google Scholar]
- Rahina, K.; Muhammad, I.A.; Muhammad, I.C.; Ayesha, M.; Abdur, R.Z.; Basharat, A. Soil Moisture Retention and Rainfed Wheat Yield Variations by the Addition of Gypsum and Green Manure. J. Soil Sci. Environ. Manag. 2020, 11, 6–16. [Google Scholar] [CrossRef]
- Qadir, M.; Steffens, D.; Yan, F.; Schubert, S. Sodium Removal from a Calcareous Saline–Sodic Soil through Leaching and Plant Uptake during Phytoremediation. Land Degrad. Dev. 2003, 14, 301–307. [Google Scholar] [CrossRef]
- Amezketa, E.; Aragües, R.; Carranza, R.; Urgel, B. Macro- and Micro-Aggregate Stability of Soils Determined by a Combination of Wet-Sieving and Laser-Ray Diffraction. Span. J. Agric. Res. 2003, 1, 83. [Google Scholar] [CrossRef] [Green Version]
- Borselli, L.; Biancalani, R.; Giordani, C.; Carnicelli, S.; Ferrari, G.A. Effect of Gypsum on Seedling Emergence in a Kaolinitic Crusting Soil. Soil Technol. 1996, 9, 71–81. [Google Scholar] [CrossRef]
- Almajmaie, A.; Hardie, M.; Acuna, T.; Birch, C. Can Soil Crusting Be Reduced through Application of Gypsum, Organic Waste, and Phosphoric Acid? J. Soil Water Conserv. 2017, 72, 597–606. [Google Scholar] [CrossRef]
- Morin, J.; van Winkel, J. The Effect of Raindrop Impact and Sheet Erosion on Infiltration Rate and Crust Formation. Soil Sci. Soc. Am. J. 1996, 60, 1223–1227. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems: A Review of the Nature, Causes and Possible Solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Singh, Y.P.; Singh, S.; Dubey, S.K. Frequency of Deep Tillage and Residual Sodium Carbonate Neutralization of Sodic Water on Soil Properties, Yield and Quality of Clusterbean and Wheat Grown in a Sequence. Agric. Res. 2013, 2, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.A.; Anderson, W.K. Responses of Soil Properties and Grain Yields to Deep Ripping and Gypsum Application in a Compacted Loamy Sand Soil Contrasted with a Sandy Clay Loam Soil in Western Australia. Aust. J. Agric. Res. 2003, 54, 273–282. [Google Scholar] [CrossRef]
- Pema, K.G.; Nagabovanalli, P.B.; Prabhudev, D.; Shruthi; Lingappa, M.; Hamsa, N.; Shrenivas, A. Comparison of Slag-Based Gypsum with Commercial Gypsum as a Nutrient Source on Soil Properties, Nutrient Uptake and Yield of Rice (Oryza sativa L.) under Aerobic and Wetland Conditions. Arch. Agron. Soil Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Umair, A.; Nadeem, M.; Bashir, K.; Hussain, K.; Naseem, W. Response of Wheat to Gypsum Application at Farmers Fields in Rainfed Pothwar. Biol. Sci. PJSIR 2018, 61, 68–71. [Google Scholar] [CrossRef]
Soil Parameters | Unit | Value |
---|---|---|
Texture | Sandy clay loam | |
pH | 7.89 + 0.05 | |
EC | dS m−1 | 1.22 + 0.13 |
Soil organic matter | % | 0.73 + 0.02 |
Available phosphorus | mg kg−1 | 6.2 + 0.89 |
Extractable potassium | ˶ | 103 + 4.5 |
Sulphate sulfur | ˶ | 3.8 + 0.7 |
Exchangeable calcium | ˶ | 563 + 17 |
Nitrate nitrogen | ˶ | 5.2 + 0.7 |
Gypsum Rates (Mg ha−1) | Ca Uptake (kg ha−1) | S Uptake (kg ha−1) | N Uptake (kg ha−1) | P Uptake (kg ha−1) | K Uptake (kg ha−1) |
---|---|---|---|---|---|
0 | 65.0 ± 1.32 d | 32.2 ± 0.21 d | 121.8 ± 3.50 c | 28.6 ± 1.62 c | 130.52 ± 2.40 d |
1 | 92.3 ± 2.53 c | 48.3 ± 0.90 c | 127.2 ± 5.93 c | 42.4 ± 0.91 b | 163.23 ± 7.69 c |
3 | 105.2 ± 1.36 b | 55.3 ± 0.63 b | 182.52 ±1.46 b | 58.2 ± 2.89 a | 181.19 ± 2.92 b |
4 | 112.3 ± 1.93 a | 60.2 ± 0.48 a | 189.40 ± 1.50 a | 42.5 ± 1.71 b | 202.21 ± 5.57 a |
F value | 444.37 | 115.86 | 383.45 | 194.46 | 2330.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, F.; Siddique, T.; Fan, R.; Azeem, M. Role of Gypsum in Conserving Soil Moisture Macronutrients Uptake and Improving Wheat Yield in the Rainfed Area. Water 2023, 15, 1011. https://doi.org/10.3390/w15061011
Abbas F, Siddique T, Fan R, Azeem M. Role of Gypsum in Conserving Soil Moisture Macronutrients Uptake and Improving Wheat Yield in the Rainfed Area. Water. 2023; 15(6):1011. https://doi.org/10.3390/w15061011
Chicago/Turabian StyleAbbas, Fakher, Tariq Siddique, Ruqin Fan, and Muhammad Azeem. 2023. "Role of Gypsum in Conserving Soil Moisture Macronutrients Uptake and Improving Wheat Yield in the Rainfed Area" Water 15, no. 6: 1011. https://doi.org/10.3390/w15061011