Comparison Study on Climate Changes between the Guangdong–Hong Kong–Macao Greater Bay Area and Areas around the Baltic Sea
Abstract
:1. Introduction
2. Data and Method
2.1. Data
2.2. Method
3. Results and Analyses
3.1. Climate Changes in Areas around Baltic Sea Area
3.2. Climate Changes in the Guangdong–Hong Kong–Macao Greater Bay
4. Discussion
4.1. Forcing Factors of Inter-Annual Scale
4.2. Forcing Factors of Decadal-to-Multidecadal or Centennial Scales
4.3. Forcing Factors of Multi-Decadal to Centennial Variation at Global or Hemispheric Scale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreft, S.; Eckstein, D.; Melchior, I. Global Climate Risk Index 2017: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2015 and 1996 to 2015; Germanwatch e. V. Bonn.: Bonn, Germany, 2016; 32p, Available online: https://germanwatch.org/sites/germanwatch.org/files/publication/16411.pdf (accessed on 29 November 2016).
- McNamara, K.E.; Clissold, R.; Westoby, R. Women’s capabilities in disaster recovery and resilience must be acknowledged, utilized and supported. J. Gend. Stud. 2021, 30, 119–125. [Google Scholar] [CrossRef]
- Malik, A.A.; Stolove, J. In South Asian Slums, Women Face the Consequences of Climate Change, LEAD Pakistan, Islamabad. Available online: https://www.urban.org/urban-wire/south-asian-slums-women-face-consequencesclimate-change (accessed on 22 August 2017).
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallick, B.; Ahmed, B.; Vogt, J. Living with the Risks of Cyclone Disasters in the South-Western Coastal Region of Bangladesh. Environments 2017, 4, 13. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Alegría, A.; Möller, V.; Poloczanska, E.S.; Mintenbeck, K.; Götze, S. Annex I: Global to Regional Atlas. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2811–2896. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar] [CrossRef]
- Zhou, C.S.; Luo, L.J.; Shi, C.Y.; Wang, J.H. Spatio-temporal Evolutionary Characteristics of the Economic Development in the Guangdong-Hong Kong-Macao Greater Bay Area and Its Influencing Factors. Trop. Geogr. 2017, 37, 802–813. [Google Scholar]
- Liu, Y.X. Research and Implications of Bay Zone Economy Home and Abroad. Urban Insight 2014, 3, 155–162. [Google Scholar]
- FEMA. Coastal AE Zone and VE Zone Demographics Study and Primary Frontal Dune Study to Support the NFIP; Federal Emergency Management Agency Technical Report; Federal Emergency Management Agency: Washington, DC, USA, 2008; 98p. [Google Scholar]
- Moser, S.C.; Davidson, M.A.; Kirshen, P.; Mulvaney, P.; Murley, J.F.; Neumann, J.E.; Petes, L.; Reed, D. Chapter 25: Coastal Zone Development and Ecosystems. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 579–618. [Google Scholar]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Chapter 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.; Chambers, D.; Feely, R.A.; Gulev, S.; Johnson, G.C.; Josey, S.A.; Kostianoy, A.; et al. Observations: Ocean. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 255–316. [Google Scholar] [CrossRef] [Green Version]
- Wong, P.P.; Losada, I.J.; Gattuso, J.; Hinkel, J.; Khattabi, A.; McInnes, K.; Saito, Y.; Sallenger, A. Coastal systems and low-lying areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. [Google Scholar]
- Burkett, V.R.; Hyman, R.C.; Hagelman, R.; Hartley, S.B.; Sheppard, M.; Doyle, T.W.; Beagan, D.M.; Meyers, A.; Hunt, D.T.; Maynard, M.K.; et al. Why Study the Gulf Coast? In Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I. Department of Transportation; U.S. Climate Change Science Program: Washington, DC, USA, 2008. [Google Scholar]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States, United States Global Change Research Program; Cambridge University Press: Cambridge, UK, 2009; pp. 145–149. [Google Scholar]
- Qian, G.M.; Lv, Y.P.; Du, Y.D.; Chen, X.G.; Wang, C.L.; Tang, H.Y. Guangdong Province Climate Business Technical Manual; China Meteorological Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Lehmann, A.; Getzlaff, K.; Harlaß, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 2011, 46, 185–196. [Google Scholar] [CrossRef]
- HELCOM. Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Balt. Sea Environ. Proc. 2013, 137, 3–24. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Kong, F. Characteristics of temperature time series in Hong Kong and Macao in the past 100 years and their correlation with ENSO. Water Resour. Hydropower Eng. 2020, 51, 45–53. (In Chinese) [Google Scholar]
- Fong, S.K.; Wu, C.S.; Wang, T.; He, X.J.; Wang, A.Y.; Liu, J.; Liang, B.Q.; Leong, K.C. Multiple time scales analysis of climate variation in Macao during the last 100 years. J. Trop. Meteorol. 2010, 26, 452–462. (In Chinese) [Google Scholar]
- Ji, Z.P.; Gu, D.J.; Xie, J.G. Multiple time scales analysis of climate variation in Guangzhou during the last 100 years. J. Trop. Meteorol. 1999, 15, 48–55. (In Chinese) [Google Scholar]
- Zhou, W.; Jian, Y.G.; Chen, C.M.; Liang, J.J. The impact of El Nino and Asian monsoons on rainfall of Hong Kong and Macao. Trop. Geogr. 2001, 21, 36–40. (In Chinese) [Google Scholar]
- Wu, J.; Xu, Y.; Shi, Y. Urbanization effects on local climate change in South China. Clim. Environ. Res. 2015, 6, 654–661. (In Chinese) [Google Scholar]
- Han, C.F. Asian Monsoon Climate Change and Effects of Different External Forcings during Historical Period; Nanjing Normal University: Nanjing, China, 2017. (In Chinese) [Google Scholar]
- Du, Y.D.; Zhang, Y.; Lu, H.; Duan, H.L.; Luo, X.L.; Liu, C.H.J.; Li, Y.L.; Zhang, Y.J.; Huang, C.R.; Hu, F.; et al. Assessment Report of Climate Change in South China: 2020; China Meteorological Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Omstedt, A.; Pettersen, C.; Rodhe, J.; Winsor, P. Baltic Sea Climate: 200Yr of Data on Air Temperature, Sea Level Variation, Ice Cover, and Atmospheric Circulation. Clim. Res. 2004, 25, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Bhend, J.; Storch, V. Consistency of observed winter precipitation trends in northern Europe with regional climate change projections. Clim. Dyn. 2008, 31, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Stips, A.; Lilover, M. Yet Another Assessment of Climate Change in the Baltic Sea Area: Breakpoints in Climate Time Serie. In Proceedings of the 2010 IEEE/OES Baltic International Symposium (BALTIC), Riga, Latvia, 24–27 August 2010; pp. 1–9. [Google Scholar] [CrossRef]
- Eriksson, C.; Omstedt, A.; James, E.O.; Donald, B.P.; Harold, O.M. Characterizing the European SubArctic Winter Climate since 1500 Using Ice, Temperature, and Atmospheric Circulation Time Series. J. Clim. 2007, 20, 5316–5334. [Google Scholar] [CrossRef] [Green Version]
- Appenzeller, C.; Stocker, T.F.; Anklin, M. North Atlantic Oscillation dynamics recorded in Greenland ice cores. Science 1998, 282, 446–449. [Google Scholar] [CrossRef]
- Chen, D.L.; Hellström, C. The influence of the North Atlantic Oscillation on the regional temperature variability in Sweden: Spatial and temporal variations. Tellus 1999, 51, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Manli, C.W.; Hsing, H.S.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Flandring, P.; Rilling, G.; Goncalves, P. Empirical mode decomposition as a filterbank. IEEE Signal. Proc. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.H.; Huang, N.E.; Long, S.R.; Peng, C.K. On the trend detrending and the variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA 2007, 104, 14889–14894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.H.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. A 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.D. Multi-Scale fluctuation of European temperature revealed by EEMD analysis. Acta Sci. Nat. Univ. Pekin. 2011, 47, 627–635. (In Chinese) [Google Scholar]
- Wang, B.; Hu, Y.M.; Du, Y.D.; Zhai, Z.H.; Wu, X.X. Study on the difference between wavelet analysis and EEMD in multi-scale decomposition of the temperature and precipitation of Guangzhou. J. Trop. Meteorol. 2014, 30, 769–776. (In Chinese) [Google Scholar]
- Sun, X.; Lin, Z.S.; Cheng, X.X.; Jiang, C.Y. Regional features of the temperature trend in China based on the empirical mode decomposition. J. Geogr. Sci. 2008, 18, 166–176. [Google Scholar] [CrossRef]
- Li, H.Q.; Fu, Z.T. Sunshine duration’s trend behavior based on EEMD over China in 1956–2005. Acta Sci. Nat. Univ. Pekin. 2012, 48, 393–398. (In Chinese) [Google Scholar]
- Venzke, S.; Allen, M.R.; Sutton, R.T.; Rowell, D.P. The Atmospheric Response over the North Atlantic to Decadal Changes in Sea Surface Temperature. J. Clim. 1999, 12, 2562–2584. [Google Scholar] [CrossRef]
- Bhend, J.; Storch, H. Is greenhouse gas warming a plausible explanation for the observed warming in the Baltic Sea catchment area? Boreal Environ. Res. 2009, 14, 81–88. [Google Scholar]
- Qian, C. Disentangling the urbanization effect, multi-decadal variability, and secular trend in temperature in eastern China during 1909–2010. Environ. Sci. 2016, 2, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Soon, W.; Dutta, K.; Legates, D.R.; Velasco, V.; Zhang, W.J. Variation in surface air temperature of China during the 20th century. J. Atmos. Sol.-Terr. Phys. 2011, 73, 2331–2344. [Google Scholar] [CrossRef]
- Zhao, P.; Jones, P.; Cao, L.J.; Yan, Z.W.; Zha, S.Y.; Zhu, Y.N.; Yu, Y.; Tang, G.L. Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years. J. Clim. 2014, 27, 4693–4703. [Google Scholar] [CrossRef]
- Li, S.L.; Bates, G.T. Influence of the Atlantic Multidecadal Oscillation on the Winter Climate of East China. Adv. Atmos. Sci. 2007, 24, 126–135. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, B.; Ljungqvist, F.C.; Zhao, Y. The relationship between the Atlantic multidecadal oscillation and temperature variability in China during the last millennium. J. Quat. Sci. 2013, 28, 653–658. [Google Scholar] [CrossRef]
- Yun, J.H.; Ha, K.J.; Jo, Y.H. Interdecadal changes in winter surface air temperature over East Asia and their possible causes. Clim. Dyn. 2018, 51, 1375–1390. [Google Scholar] [CrossRef]
- Xu, Y.F.; Li, T.; Shen, S.H.; Hu, Z.H. Assessment of CMIP5 Models Based on the Interdecadal Relationship between the PDO and Winter Temperature in China. Atmosphere 2019, 10, 597. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Ha, K.J. Interannual and decadal covariabilities in East Asian and Western North Pacific summer rainfall for 1979–2016. Clim. Dyn. 2021, 56, 1017–1033. [Google Scholar] [CrossRef]
- Tett, S.F.B.; Betts, R.A.; Crowley, T.J.; Gregory, J. The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim. Dyn. 2007, 28, 3–34. [Google Scholar] [CrossRef]
- Crowley, T.J. Causes of climate change over the past 1000 years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Hegerl, G.C.; Hasselmann, K.; Cubasch, U.; Mitchell, J.F.B.; Roeckner, E.; Voss, R.; Waszkewitz, J. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. J. Clim. Dyn. 1997, 13, 613–634. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S.; Stouffer, R.J. Climate variability of a coupled ocean-atmosphere-land surface model: Implication for the detection of global warming. Bull. Am. Meteorol. Soc. 1997, 78, 1177–1185. [Google Scholar]
- Zhang, R.; Delworth, T.L.; Held, I.M. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, M.; Ramankutty, N. An Oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E.; Wallace, J.M.; Smoliak, B.V.; Chen, X.Y. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 2011, 37, 759–773. [Google Scholar] [CrossRef] [Green Version]
- Delsole, T.; Tippett, M.K.; Shukla, J. A Significant Component of Unforced Multidecadal Variability in the Recent Acceleration of Global Warming. J. Clim. 2011, 24, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.G.; Fyfe, J.C.; Xie, S.P.; Dai, X.G. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang. 2015, 5, 555–559. [Google Scholar] [CrossRef]
Areas around Baltic Sea Area (BSA) | |||||
---|---|---|---|---|---|
Station Name | Station ID | Country Code (CN) | Latitude (°N) | Longitude (°E) | Height (m) |
Stockholm | 10 | Sweden (SE) | 59.35 | 18.05 | 44.00 |
Vestervig | 107 | Denmark (DK) | 56.77 | 8.32 | 18.00 |
Poznan | 206 | Poland (PL) | 52.20 | 18.66 | 115.00 |
Frankfurt | 4106 | Germany (DE) | 50.13 | 8.67 | 124.00 |
Haparanda_A | 5794 | Sweden (SE) | 65.82 | 24.12 | 16.00 |
The Guangdong–Hong Kong–Macao Greater Bay (GBA) | |||||
Station Name | Station ID | Country code (CN) | Latitude (°N) | Longitude (°E) | Height (m) |
Guangzhou | 59,287 | China (CN) | 23.22 | 113.48 | 70.70 |
Hong Kong | 45,005 | Hongkong (HK) | 22.29 | 114.17 | 32.00 |
Macao | 45,011 | Macao (MO) | 22.20 | 113.53 | 110.00 |
Temperature | |||||
---|---|---|---|---|---|
Station ID | 10 | 107 | 206 | 4106 | 5794 |
Length of original data (daily) | 96,424 | 53,113 | 25,202 | 54,786 | 58,592 |
Length of correction data (daily) | 96,424 | 53,076 | 25,202 | 54,786 | 58,559 |
Length of correction data (monthly) | 1756.01– 2019.12 | 1874.08– 2019.12 | 1951.01– 2019.12 | 1870.01– 2019.12 | 1859.08– 2019.12 |
Length of correction data (year) | 1756–2019 | 1875–2019 | 1951–2019 | 1870–2019 | 1860–2019 |
Precipitation | |||||
Station ID | 10 | 107 | 206 | 4106 | 5794 |
Length of original data (daily) | 58,804 | 53,325 | 25,202 | 54,786 | 58,608 |
Length of correction data (daily) | 58,804 | 53,104 | 25,197 | 54,786 | 58,585 |
Length of correction data (monthly) | 1859.01– 2019.12 | 1874.01– 2019.12 | 1951.01– 2019.12 | 1870.01– 2019.12 | 1859.07– 2019.12 |
Length of correction data (year) | 1859–2019 | 1874–2019 | 1951–2019 | 1870–2019 | 1860–2019 |
Temperature | ||||
---|---|---|---|---|
Station ID | 45,005 | 59,287 | Station ID | 45,011 |
Length of original data (monthly) | 1884.01– 2019.12 | 1908.01– 2019.12 | Length of original data (daily) | 1901.01– 2019.12 |
Length of correction data (monthly) | 1884.04– 2019.12 | 1908.01– 2019.12 | Length of correction data (monthly) | 1901.01– 2019.12 |
Length of correction data (year) | 1885–2019 | 1908–2019 | Length of correction data (year) | 1901–2019 |
Precipitation | ||||
Station ID | 45,005 | 59,287 | Station ID | 45011 |
Length of original data (monthly) | 1884.01– 2019.12 | 1908.01– 2019.12 | Length of original data (daily) | 1901.01– 2019.12 |
Length of correction data (monthly) | 1884.01– 2019.12 | 1908.01– 2019.12 | Length of correction data (monthly) | 1901.01– 2019.12 |
Length of correction data (year) | 1884–2019 | 1908–2019 | Length of correction data (year) | 1901–2019 |
Mean Periods of IMFs in BSA Area (Unit: a) | ||||||||
---|---|---|---|---|---|---|---|---|
IMFs | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
10 | 2.0 | 4.0 | 7.6 | 14.0 | 28.0 | 57.7 | 184.7 | 264 |
107 | 2.1 | 4.2 | 7.9 | 14.5 | 25.8 | 92 | 143.4 | |
206 | 2.1 | 4.1 | 8.5 | 18.0 | 33.7 | 71.4 | ||
4106 | 1.9 | 4.3 | 7.5 | 15.6 | 29.4 | 77.6 | 149.8 | |
5794 | 2.0 | 3.9 | 7.4 | 13.2 | 34.8 | 75.0 | 171.4 | |
2.0–4.3, 7.4–8.5 | 13.2–18.0, 25.8–34.8, 57.7–92.0 | 143.6–184.7, 264 | ||||||
Main Periods of IMFs in BSA Area (unit: a) | ||||||||
IMFs | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
10 | 2.4 | 3.5 | 8.0 | 15.3 | 28.5 | 66.7 | 199.8 | 260 |
107 | 2.4 | 5.6 | 8.0 | 18.2 | 28.5 | 99.9 | 199.8 | |
206 | 2.4 | 6.1 | 8.3 | 16.6 | 33.3 | 66.6 | ||
4106 | 1.8 | 5.6 | 7.7 | 18.2 | 40.0 | 99.8 | 199.8 | |
5794 | 2.4 | 3.9 | 8.3 | 20.0 | 50.0 | 66.6 | 199.8 | |
1.8–6.1, 7.7–8.3 | 15.3–20, 28.5–50, 66.6–99 | 200–260 | ||||||
Summary Periods | Inter-annual scale | Inter-decadal scale | Centennial scale | |||||
2–4, 7–9 | 13–20, 26–50, 66–99 | 143–185, 200–264 |
Mean Periods of IMFs in BSA Area (Unit: A) | ||||||
---|---|---|---|---|---|---|
IMFs | C4 | C5 | C6 | C7 | C8 | C9 |
10 | 2.1 | 2.8 | 7.4 | 15.0 | 33.1 | 135.8 |
107 | 2.2 | 4.4 | 8.1 | 18.6 | 38.1 | 85.6 |
206 | 2.0 | 4.3 | 9.6 | 18.3 | 35.0 | — — |
4106 | 2.0 | 3.9 | 9.0 | 17.0 | 40.1 | 67.9 |
5794 | 2.1 | 2.8 | 8.1 | 14.4 | 39.7 | 101.5 |
2.1–4.4, 7.4–9.6 | 14.4–18.6, 33.1–40.1, 67.9–85.6 | 101.5–135.8 | ||||
Main Periods of IMFs in BSA Area (unit: A) | ||||||
IMFs | C4 | C5 | C6 | C7 | C8 | C9 |
10 | 2.2 | 4.2 | 6.9 | 16.7 | 33.3 | 100.0 |
107 | 2.2 | 6.4 | 8.0 | 18.2 | 33.3 | 100.0 |
206 | 3.3 | 5.1 | 11.0 | 16.6 | 44.4 | — — |
4106 | 2.0 | 4.2 | 11.1 | 20.0 | 66.6 | 100.0 |
5794 | 2.5 | 3.8 | 11.1 | 15.3 | 50.0 | 100.0 |
2.0–3.3, 4.2–8.0 | 11.0–20.0, 33–50,67–86 | 100–136 | ||||
Summary Periods | Inter-annual scale | Inter-decadal scale | Centennial scale | |||
2–4, 7–9 | 11–20, 33–50, 67–86 | 100–136 |
Mean Periods of IMFs in GBA Area (Unit: a) | |||||||
---|---|---|---|---|---|---|---|
IMFs | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
45,005 | 1.9 | 3.6 | 8.3 | 10.3 | 30.0 | 92.4 | 134.3 |
45,011 | 1.8 | 3.5 | 8.3 | 13.5 | 31.9 | 67.0 | 123.6 |
59,287 | 1.8 | 3.6 | 8.7 | 14.2 | 45.0 | 55.2 | 128.9 |
1.8–3.6, 8.3–8.7 | 10.3–14.2, 30.0–45.0, 55.2–92.4 | 123.6–134.3 | |||||
Main Periods of IMFs in GBA Area (unit: a) | |||||||
IMFs | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
45,005 | 2.1 | 3.1 | 8.3 | 13.3 | 39.9 | 74.9 | 199.8 |
45,011 | 1.9 | 3.1 | 7.1 | 13.2 | 33.3 | 99.9 | 199.8 |
59,287 | 1.9 | 3.1 | 9.4 | 13.3 | 49.9 | 66.6 | 100.0 |
1.9–3.1, 7.1–9.4 | 13.3, 33.3–50.0, 66.6–100 | 100–199.8 | |||||
Summary Periods | Inter-annual scale | Inter-decadal scale | Centennial scale | ||||
2–4, 7–9 | 10–14, 30–50, 55–99 | 100–135 |
Mean Periods of IMFs in GBA Area (Unit: a) | ||||||
---|---|---|---|---|---|---|
IMFs | C4 | C5 | C6 | C7 | C8 | C9 |
45,005 | 2.6 | 2.8 | 9.3 | 20.3 | 28.1 | 69.8 |
45,011 | 2.4 | 3.6 | 9.2 | 25.6 | 54.7 | 63.1 |
59,287 | 2.4 | 5.0 | 8.7 | 20.2 | 56.3 | 103.6 |
2.4–5.0, 8.7–9.3 | 20.2–25.6, 28.1–56.3, 63.1–69.8 | 103.6 | ||||
Main Periods of IMFs in GBA Area (unit: a) | ||||||
IMFs | C4 | C5 | C6 | C7 | C8 | C9 |
45,005 | 2.6 | 6.0 | 11.8 | 25.0 | 28.5 | 99.9 |
45,011 | 3.4 | 6.7 | 11.8 | 28.5 | 50.0 | 99.0 |
59,287 | 2.5 | 6.7 | 10.5 | 24.9 | 50.0 | 100.0 |
2.5–3.4, 6.0–6.7 | 10.5–11.8, 24.9–28.5, 28.5–50 | 100 | ||||
Summary Periods | Inter-annual scale | Inter-decadal scale | Centennial scale | |||
2–4, 6–9 | 11–29, 50–70 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, J.; Yang, J.; Zheng, J.; Xu, Y.; Chai, W. Comparison Study on Climate Changes between the Guangdong–Hong Kong–Macao Greater Bay Area and Areas around the Baltic Sea. Water 2023, 15, 912. https://doi.org/10.3390/w15050912
Wang B, Zhang J, Yang J, Zheng J, Xu Y, Chai W. Comparison Study on Climate Changes between the Guangdong–Hong Kong–Macao Greater Bay Area and Areas around the Baltic Sea. Water. 2023; 15(5):912. https://doi.org/10.3390/w15050912
Chicago/Turabian StyleWang, Bing, Jinpeng Zhang, Jie Yang, Jing Zheng, Yanhong Xu, and Wenguang Chai. 2023. "Comparison Study on Climate Changes between the Guangdong–Hong Kong–Macao Greater Bay Area and Areas around the Baltic Sea" Water 15, no. 5: 912. https://doi.org/10.3390/w15050912
APA StyleWang, B., Zhang, J., Yang, J., Zheng, J., Xu, Y., & Chai, W. (2023). Comparison Study on Climate Changes between the Guangdong–Hong Kong–Macao Greater Bay Area and Areas around the Baltic Sea. Water, 15(5), 912. https://doi.org/10.3390/w15050912