Evapotranspiration Partitioning Using a Process-Based Model over a Rainfed Maize Farmland in Northeast China
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Observation Method
2.3. Model Description
2.4. Model Evaluation
3. Results
3.1. Climates of the Site
3.2. Evapotranspiration Partitioning
3.3. Variations of Evapotranspiration Partitioning
3.3.1. ET Partitioning in Humid and Drought Years
3.3.2. Seasonal Variation of ET Partitioning
3.3.3. ET Partitioning in Different Maize Stages
3.4. Relationships between LAI, Above-Ground Biomass, and Evapotranspiration Partitioning
4. Discussion
4.1. Simulation of SOILWAT2 Model
4.2. Evapotranspiration Partitioning of Maize
4.3. Factors Affecting Evapotranspiration Partitioning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burchard-Levine, V.; Nieto, H.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Prueger, J.H.; Hipps, L.E.; Bambach-Ortiz, N.; McElrone, A.J.; Castro, S.J.; et al. Application of a remote-sensing three-source energy balance model to improve evapotranspiration partitioning in vineyards. Irrig. Sci. 2022, 40, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Ren, X.; Lu, Q.; He, H.; Zhang, L.; Niu, Z. Estimation and analysis of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of East China. J. Geogr. Sci. 2019, 29, 1807–1822. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Duan, L.; Tong, X.; Liu, T.; Wang, G.; Zhang, L.; Singh, V.P. Simulation and partition evapotranspiration for the representative landform-soil-vegetation formations in Horqin Sandy Land, China. Theor. Appl. Climatol. 2020, 140, 1221–1232. [Google Scholar] [CrossRef]
- Bambach, N.; Kustas, W.; Alfieri, J.; Prueger, J.; Hipps, L.; McKee, L.; Castro, S.J.; Volk, J.; Alsina, M.M.; McElrone, A.J. Evapotranspiration uncertainty at micrometeorological scales: The impact of the eddy covariance energy imbalance and correction methods. Irrig. Sci. 2022, 40, 445–461. [Google Scholar] [CrossRef]
- Lai, J.; Liu, T.; Luo, Y. Evapotranspiration partitioning for winter wheat with shallow groundwater in the lower reach of the Yellow River Basin. Agr. Water Manag. 2022, 266, 107561. [Google Scholar] [CrossRef]
- Lei, H.; Yang, D. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agric. For. Meteorol. 2010, 150, 581–589. [Google Scholar] [CrossRef]
- Zuniga, M.; Ortega-Farías, S.; Poblete-Echeverría, C. Use of sap flow sensors to determine transpiration of a young drip-irrigated olive orchard (‘Arbequina’) under semi-arid conditions. Acta Hortic. 2014, 1057, 405–410. [Google Scholar] [CrossRef]
- Wen, X.; Yang, B.; Sun, X.; Lee, X. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agric. For. Meteorol. 2016, 230–231, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Tian, L.; Cai, Z. Season-specific evapotranspiration partitioning using dual water isotopes in a Pinus yunnanensis ecosystem, southwest China. J. Hydrol. 2022, 608, 127672. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Wang, H. A modified isotope-based method for potential high-frequency evapotranspiration partitioning. Adv. Water Resour. 2022, 160, 104103. [Google Scholar] [CrossRef]
- Xu, T.; Bateni, S.M.; Margulis, S.A.; Song, L.; Liu, S.; Xu, Z. Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system. J. Hydrometeorol. 2016, 17, 2353–2370. [Google Scholar] [CrossRef]
- Yang, B.; Wang, P.; You, D.; Liu, W. Coupling evapotranspiration partitioning with root water uptake to identify the water consumption characteristics of winter wheat: A case study in the North China Plain. Agric. For. Meteorol. 2018, 259, 296–304. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.J.; McBean, E. Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random forest and support vector regression, for a cabbage farmland. Agricu. Water Manag. 2020, 228, 105923. [Google Scholar] [CrossRef]
- Hadiwijaya, B.; Isabelle, P.-E.; Nadeau, D.F.; Pepin, S. Can a physically-based land surface model accurately represent evapotranspiration partitioning? A case study in a humid boreal forest. Agric. For. Meteorol. 2021, 304–305, 108410. [Google Scholar] [CrossRef]
- Jiang, S.; Liang, C.; Zhao, L. Energy and evapotranspiration partitioning over a humid region orchard: Field measurements and partitioning model comparisons. J. Hydrol. 2022, 610, 127890. [Google Scholar] [CrossRef]
- Bradford, M.A.; Warren, R.J.; Baldrian, P.; Crowther, T.W.; Maynard, D.S.; Oldfield, E.E.; Wieder, W.R.; Wood, S.A.; King, J.R. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Chang. 2014, 4, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, K.A.; Schlaepfer, D.R.; Bradford, J.B. Spatial and ecological variation in dryland ecohydrological responses to climate change: Implications for management. Ecosphere 2016, 7, e01590. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Wilson, S.D.; Duniway, M.C.; Jia, G.; Pyke, D.A. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, K.A.; Bradford, J.B.; Martyn, T.E.; Schlaepfer, D.R.; Lauenroth, W.K. STEPWAT2: An individual-based model for exploring the impact of climate and disturbance on dryland plant communities. Ecosphere 2018, 9, e02394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Schlaepfer, D.R.; Chen, N.; Lauenroth, W.K.; Gu, S. Comparison of ET partitioning and water balance between degraded meadow and artificial pasture in three-river source region on the Qinghai-Tibetan Plateau. Ecohydrology 2021, 14, e2329. [Google Scholar] [CrossRef]
- Zhang, L.; Schlaepfer, D.R.; Chen, Z.; Zhao, L.; Li, Q.; Gu, S.; Lauenroth, W.K. Precipitation and evapotranspiration partitioning on the Three-River Source Region: A comparison between water balance and energy balance models. J. Hydrol. Reg. Stud. 2021, 38, 100936. [Google Scholar] [CrossRef]
- Mi, N.; Cai, F.; Zhang, S.; Zhang, Y.; Ji, R.; Chen, N.; Ji, Y.; Wang, D. Thermal time requirements for maize growth in northeast China and their effects on yield andwater supply under climate change conditions. Water 2021, 13, 2612. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Lin, X.; Hubbard, K.G.; Lv, S.; Wang, J. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of northeast China. Earth Interact. 2016, 20, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yamanaka, T.; Li, X.Y.; Wei, Z. Partitioning evapotranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agric. For. Meteorol. 2015, 208, 16–31. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Y.; Jin, C.; Wang, A.; Guan, D.; Tian, L. Intercomparison of three methods to estimate evapotranspiration over temperate meadow in Inner Mongolia: Penman–Monteith, Makkink and Priestley-Taylor equation. Water Environ. J. 2018, 32, 500–507. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Y.; Jin, C.; Wang, A.; Guan, D.; Mi, N.; Zhou, B. Performance of Priestley-Taylor model for estimating evaporation with and without snow coverage over a temperate meadow in Inner Mongolia, China. Water Environ. J. 2019, 33, 241–251. [Google Scholar] [CrossRef]
- Nazari, M.; Sadeghi, S.M.M.; Stan, J.T.V.; Chaichi, M.R. Rainfall interception and redistribution by maize farmland in central Iran. J. Hydrol. Reg. Stud. 2020, 27, 100656. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Zhuang, Q. Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China. Agric. Water Manag. 2021, 243, 106473. [Google Scholar] [CrossRef]
- Cai, F.; Ming, H.; Mi, N.; Xie, Y.; Zhang, Y. Comparison of effects of root water uptake functions for simulating surface water and heat fluxes within a corn farmland ecosystem in Northeast China. J. Irrig. Drain. Eng. 2017, 143, 04017040. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Murphy, R. rSOILWAT2: An Ecohydrological Ecosystem-Scale Water Balance Simulation Model; R Package Version 3.4.0, Github Repositories. 2018. Available online: https://www.r-project.org/ (accessed on 30 January 2023).
- Parton, W.J. Abiotic Section of ELM. In Grassland Simulation Model; Innis, G.S., Ed.; volume 26 of Ecological Studies; Springer: New York, NY, USA, 1978; pp. 31–53. [Google Scholar]
- McKee, T.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- China Meteorological Administration. Specifications for Agrometeorological Observation; China Meteorological Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Bradford, J.B.; Schlaepfer, D.R.; Lauenroth, W.K.; Yackulic, C.B.; Duniway, M.; Hall, S.; Jia, G.; Jamiyansharav, K.; Munson, S.M.; Wilson, S.D. Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands. Sci. Rep. 2017, 7, 12923. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Du, T. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2017, 127, 85–96. [Google Scholar] [CrossRef]
- Fang, H.; Li, Y.; Gu, X.; Yu, M.; Li, Y. Evapotranspiration partitioning, water use efficiency, and maize yield under different film mulching and nitrogen application in northwest China. Field Crop. Res. 2021, 264, 108103. [Google Scholar] [CrossRef]
- Gao, G.; Wang, D.; Zha, T.; Wang, L.; Fu, B. A global synthesis of transpiration rate and evapotranspiration partitioning in the shrub ecosystems. J. Hydrol. 2022, 606, 127417. [Google Scholar] [CrossRef]
- Lin, M.; Sadeghi, S.M.M.; Stan, J.T.V. Partitioning of rainfall and sprinkler-irrigation by crop canopies: A global review and evaluation of available research. Hydrology 2020, 7, 76. [Google Scholar] [CrossRef]
- Wu, Y.; Du, T.; Ding, R.; Tong, L.; Li, S.; Wang, L. Multiple methods to partition evapotranspiration in a maize field. J. Hydrometeorol. 2017, 18, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Lei, H. Evapotranspiration partitioning and its interannual variability over a winter wheat-summer maize rotation system in the North China Plain. Agric. For. Meteorol. 2021, 310, 108635. [Google Scholar] [CrossRef]
- García-Leoz, V.; Villegas, J.C.; Suescún, D.; Flórez, C.P.; Merino-Martín, L.; Betancur, T.; León, J.D. Land cover effects on water balance partitioning in the Colombian Andes: Improved water availability in early stages of natural vegetation recovery. Reg. Environ. Chang. 2018, 18, 1117–1129. [Google Scholar] [CrossRef]
- Wang, L.; Good, S.P.; Caylor, K.K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 2014, 41, 6753–6757. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.L.; Huntingford, C.; Li, Y.; Zeng, Z.; Wang, X.; Ciais, P.; McVicar, T.R.; Peng, S.; Ottlé, C. Partitioning global land evapotranspiration using CMIP5 models contrained by observations. Nat. Clim. Chang. 2018, 8, 640–646. [Google Scholar] [CrossRef]
- Alam, M.S.; Lamb, D.W.; Rahman, M.M. In-situ partitioning of evaporation and transpiration components using a portable evapotranspiration dome—A case study in Tall Fescue (Festuca arundinacea). Agri. Water Manag. 2018, 213, 352–357. [Google Scholar] [CrossRef]
- Ma, Y.; Song, X.F. Applying stable isotopes to determine seasonal variability in evapotranspiration partitioning of winter wheat for optimizing agricultural management practices. Sci. Total Environ. 2019, 654, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Fatichi, S.; Pappas, C. Constrained variability of modeled T:ET ratio across biome. Geophys. Res. Lett. 2017, 44, 6795–6803. [Google Scholar] [CrossRef]
- Li, X.; Gentine, P.; Lin, C.; Zhou, S.; Sun, Z.; Zheng, Y.; Liu, J.; Zheng, C. A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. Agric. For. Meteorol. 2019, 265, 171–182. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Zhu, G.; Ren, X.; Zhang, L.; Zhang, K.; Yu, G.; Ge, R.; Li, P.; Zeng, N.; et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For. Meteorol. 2019, 279, 107701. [Google Scholar] [CrossRef]
- Scott, R.L.; Biederman, J.A. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes. Geophys. Res. Lett. 2017, 44, 6833–6840. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Zhang, W.; Liu, B.; Gong, C.; Jiang, M.; Lv, X.; Sheng, L. Partitioning daily evapotranspiration from a marsh wetland using stable isotopes in a semiarid region. Hydrol. Res. 2018, 49, 1005–1015. [Google Scholar] [CrossRef]
Measurement Factors | Instrument | Heights |
---|---|---|
Air humidity and temperature | HMP60C, Vaisala, Helsinki, Finland | 4.2 m |
Precipitation | TE525MM, Campbell Scientific, Logan, UT, USA | 1.5 m |
Photosynthetic active radiation | LI190SB, LiCor Inc., Lincoln, NE, USA | 4.2 m |
Net radiation | NR01, Hukseflux, Delft, The Netherlands | 4.2 m |
Soil moisture | ML2, DELTA-T, Inc., Cambridge, UK | 0, 5, 10, 20, and 40 cm below ground |
Soil temperature | TM-L20, DYNAMAX, Inc., Elkhart, IN, USA | 0, 5, 10, 20, and 40 cm below ground |
Soil heat flux | HFP01, HukseFlux, Delft, The Netherlands | 5 cm below ground |
Latent heat flux Sensible heat flux | CSAT3, Campbell Scientific, Logan, UT, USALi-7500, LiCor Inc., Lincoln, NE, USA | 4.2 m |
Data collector and communication | Model CR1000, Campbell Scientific, Logan, UT, USA |
Year | AET (mm) | AET/ PPT(%) | Es (mm) | Es/ AET (%) | T (mm) | T/ AET (%) | Int (mm) | Int/ AET (%) |
---|---|---|---|---|---|---|---|---|
1989 | 338.3 | 94.7 | 153.6 | 45.4 | 162.9 | 48.2 | 17.4 | 5.1 |
1990 | 517.8 | 72.7 | 265.9 | 51.4 | 210.5 | 40.6 | 23.7 | 4.6 |
1991 | 476.6 | 61.1 | 227.3 | 47.7 | 217.0 | 45.5 | 23.0 | 4.8 |
1992 | 395.7 | 109.3 | 170.6 | 43.1 | 191.7 | 48.4 | 17.2 | 4.4 |
1993 | 418.5 | 77.7 | 199.9 | 47.8 | 183.9 | 43.9 | 19.9 | 4.8 |
1994 | 464.3 | 55.8 | 207.9 | 44.8 | 226.3 | 48.7 | 16.4 | 3.5 |
1995 | 463.9 | 74.4 | 230.7 | 49.7 | 200.0 | 43.1 | 23.0 | 5.0 |
1996 | 442.1 | 67.1 | 213.6 | 48.3 | 206.2 | 46.6 | 21.2 | 4.8 |
1997 | 356.0 | 84.5 | 153.4 | 43.1 | 185.9 | 52.2 | 13.8 | 3.9 |
1998 | 507.8 | 56.5 | 263.4 | 51.9 | 218.2 | 43.0 | 23.1 | 4.6 |
1999 | 394.6 | 106.7 | 152.1 | 38.5 | 213.6 | 54.1 | 16.2 | 4.1 |
2000 | 368.5 | 83.7 | 184.8 | 50.1 | 143.6 | 39.0 | 16.9 | 4.6 |
2001 | 426.0 | 102.7 | 191.1 | 44.9 | 203.6 | 47.8 | 18.9 | 4.4 |
2002 | 411.8 | 98.1 | 185.8 | 45.1 | 204.9 | 49.8 | 18.2 | 4.4 |
2003 | 373.3 | 96.5 | 168.2 | 45.1 | 173.6 | 46.5 | 20.8 | 5.6 |
2004 | 422.0 | 57.7 | 218.9 | 51.9 | 180.9 | 42.9 | 19.4 | 4.6 |
2005 | 497.4 | 75.6 | 249.1 | 50.1 | 216.7 | 43.6 | 23.1 | 4.7 |
2006 | 412.6 | 82.0 | 199.4 | 48.3 | 181.2 | 43.9 | 16.5 | 4.0 |
2007 | 489.4 | 86.8 | 231.3 | 47.3 | 215.2 | 44.0 | 16.4 | 3.3 |
2008 | 459.2 | 72.1 | 224.7 | 48.9 | 215.5 | 46.9 | 18.8 | 4.1 |
2009 | 453.2 | 102.0 | 201.4 | 44.4 | 208.7 | 46.1 | 17.1 | 3.8 |
2010 | 517.4 | 63.9 | 273.9 | 52.9 | 210.0 | 40.6 | 23.1 | 4.5 |
2011 | 449.4 | 100.6 | 214.2 | 47.7 | 213.7 | 47.5 | 21.4 | 4.8 |
2012 | 507.5 | 58.4 | 249.2 | 49.1 | 209.7 | 41.3 | 23.8 | 4.7 |
2013 | 426.8 | 92.2 | 203.3 | 47.6 | 191.9 | 45.0 | 19.3 | 4.5 |
2014 | 365.4 | 108.1 | 161.7 | 44.3 | 182.9 | 50.1 | 16.2 | 4.4 |
2015 | 377.9 | 98.5 | 164.9 | 43.6 | 183.5 | 48.6 | 17.1 | 4.5 |
2016 | 447.4 | 72.3 | 228.6 | 51.1 | 185.5 | 41.5 | 22.8 | 5.1 |
2017 | 383.5 | 96.8 | 166.9 | 43.5 | 194.6 | 50.7 | 13.8 | 3.6 |
2018 | 403.8 | 100.5 | 184.2 | 45.6 | 195.2 | 48.3 | 17.3 | 4.3 |
Average | 432.3 | 83.6 | 204.7 | 47.1 | 197.6 | 45.9 | 19.2 | 4.4 |
STDEV | 51.2 | 17.2 | 35.2 | 3.3 | 18.7 | 3.7 | 3.0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Schlaepfer, D.R.; Zhang, L.; Lauenroth, W.K.; Mi, N.; Ji, R.; Zhang, Y. Evapotranspiration Partitioning Using a Process-Based Model over a Rainfed Maize Farmland in Northeast China. Water 2023, 15, 869. https://doi.org/10.3390/w15050869
Chen N, Schlaepfer DR, Zhang L, Lauenroth WK, Mi N, Ji R, Zhang Y. Evapotranspiration Partitioning Using a Process-Based Model over a Rainfed Maize Farmland in Northeast China. Water. 2023; 15(5):869. https://doi.org/10.3390/w15050869
Chicago/Turabian StyleChen, Nina, Daniel R. Schlaepfer, Lifeng Zhang, William K. Lauenroth, Na Mi, Ruipeng Ji, and Yushu Zhang. 2023. "Evapotranspiration Partitioning Using a Process-Based Model over a Rainfed Maize Farmland in Northeast China" Water 15, no. 5: 869. https://doi.org/10.3390/w15050869
APA StyleChen, N., Schlaepfer, D. R., Zhang, L., Lauenroth, W. K., Mi, N., Ji, R., & Zhang, Y. (2023). Evapotranspiration Partitioning Using a Process-Based Model over a Rainfed Maize Farmland in Northeast China. Water, 15(5), 869. https://doi.org/10.3390/w15050869