Assessment of the Hydrological Conditions of Carps Spawning Grounds in the Sylhet Haor Basins, and the Halda River System, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Duration
2.2. Water Quality Measurement
2.3. Secondary Data Collection for Cross Check and Correlation
2.4. Estimation of the WPI (Water Pollution Index)
2.5. Data Analysis
3. Results
3.1. Spatial Variation in Water Quality Parameters
3.2. Temporal Variation in Water Quality Parameters
3.3. WPI (Water Pollution Index) Conditions of the Carp Spawning Environment
3.4. Climatic Conditions of the Carp Spawning Area
3.5. Spawning Performance of Carps
3.6. Framework to Visualize the Hydrological Conditions for the Spawning of Carp Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarder, M.R.I.; Yeasin, M.; Jewel, M.Z.H.; Khan, M.M.R.; Simonsen, V. Identification of Indian Major Carps (Catla Catla, Labeo Rohita and Cirrhinus Cirrhosus) and Their Hybrids by Phenotypic Traits, Allozymes and Food Habits. Asian Fish. Sci. 2011, 24, 49–61. [Google Scholar] [CrossRef]
- Bandara, T. Scientific Footprint of Indian Major Carp Research in South Asia: A Scientometric Study between 1955 and 2018. J. Appl. Aquac. 2021, 33, 267–278. [Google Scholar] [CrossRef]
- Jannatul, F.M.; Rashidul, K.; Amzad, H.M.; Arifur, R. Fin Fish Assemblage and Biodiversity Status of Carps on Halda River. Ann. Vet. Anim. Sci. 2015, 2, 151–161. [Google Scholar]
- Chakraborty, B.K.; Shahroz, M.H.; Bhuiyan, A.B.; Bhattacharjee, S.; Chattoraj, S. Status of Indian Major Carps Spawn in the Halda River along with Marketing and Economic Condition of the Fishers and Related Collectors. Int. J. Biol. Innov. 2019, 01, 40–50. [Google Scholar] [CrossRef]
- Patra, R.W.R.; Azadi, M.A. Hydrological Conditions Influencing the Spawning of Major Carps in the Halda River, Chittagong, Bangladesh. Bangladesh J. Zool. 1985, 13, 63–72. [Google Scholar]
- Hossain, M.B.; Nur, A.-A.U.; Ahmed, M.M.; Ullah, M.A.; Albeshr, M.F.; Arai, T. Growth, Yield and Profitability of Major Carps Culture in Coastal Homestead Ponds Stocked with Wild and Hatchery Fish Seed. Agriculture 2022, 12, 1131. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Chowdhury, G.; Adikari, D.; Jahan, I.; Andrawina, Y.O.; Hossain, M.A.; Schneider, P.; Iqbal, M.M. Macroplastics Pollution in the Surma River in Bangladesh: A Threat to Fish Diversity and Freshwater Ecosystems. Water 2022, 14, 3263. [Google Scholar] [CrossRef]
- Maria, A.B.; Iqbal, M.M.; Hossain, M.A.R.; Rahman, M.A.; Uddin, S.; Hossain, M.A.; Jabed, M.N. Present Status of Endangered Fish Species in Sylhet Sadar, Bangladesh. Int. J. Nat. Sci. 2016, 6, 104–110. [Google Scholar]
- Chowdhury, M.A.; Karim, M.A.; Rahman, M.T.; Shefat, S.H.T.; Rahman, A.; Hossain, M.A. Biodiversity Assessment of Indigenous Fish Species in the Surma River of Sylhet Sadar, Bangladesh. Punjab Univ. J. Zool. 2019, 34, 73–77. [Google Scholar] [CrossRef]
- Iqbal, M.; Kanon, M.H.; Hossain, M.A.; Hossain, A.; Nasren, S.; Islam, M.J.; Rahman, M.A. Diversity of Indigenous Fish Species in Konoskhaihaor, Northeast Bangladesh. Punjab Univ. J. Zool. 2015, 30, 73–79. [Google Scholar]
- Das, S.K.; Roy, N.C.; Hossain, M.A. Diversity of Indigenous Fish Species in Ratargul Freshwater Swamp Forest, Bangladesh. Int. J. Sci. Res. Environ. Sci. 2017, 5, 28–35. [Google Scholar] [CrossRef]
- Gad, M.; El-Safa, M.M.A.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.; Saleh, A.H. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [Google Scholar] [CrossRef]
- Massoud, M.A.; El-Fadel, M.; Scrimshaw, M.D.; Lester, J.N. Factors Influencing Development of Management Strategies for the Abou Ali River in Lebanon I: Spatial Variation and Land Use. Sci. Total Environ. 2006, 362, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Khakpour, A.; Omidvar, B.; Farokhnia, A. Comparison of ANN and Principal Component Analysis-Multivariate Linear Regression Models for Predicting the River Flow Based on Developed Discrepancy Ratio Statistic. Expert Syst. Appl. 2010, 37, 5856–5862. [Google Scholar] [CrossRef]
- Hossain, M.; Rabby, A. Seasonality of Physicochemical Parameters and Fin Fish Diversity at Hakaluki Haor (Fenchungonj Upazilla), Sylhet, Bangladesh. Mar. Life Sci. 2020, 2, 113–119. [Google Scholar]
- Venugopal, T.; Giridharan, L.; Jayaprakash, M. Characterization and Risk Assessment Studies of Bed Sediments of River Adyar-an Application of Speciation Study. Int. J. Environ. Res. 2009, 3, 581–598. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Hoque, M.F. Preliminary Assessment of Heavy Metal Contamination in Surface Sediments from a River in Bangladesh. Environ. Earth Sci. 2015, 73, 1837–1848. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Zanin, G.; Birolo, M.; Trocino, A.; Sambo, P.; Borin, M.; Xiccato, G. Effect of Stocking Density of Fish on Water Quality and Growth Performance of European Carp and Leafy Vegetables in a Low-Tech Aquaponic System. PLoS ONE 2019, 14, e0217561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Hossain, M.A.; Begum, M.; Roy, N.C. Freshwater Mussel (Lamelliedens Marginalis) to Reduce the Lead (Pb) Bioaccumulation in Aquaculture of Stinging Catfish, Heteropneustes Fossilis. J. Appl. Aquac. 2022, 1–17. [Google Scholar] [CrossRef]
- Aura, C.M.; Mwarabu, R.L.; Nyamweya, C.S.; Owiti, H.; Ongore, C.O.; Guya, F.; Musa, S.; Owili, M.; Macaria, S.; Abila, R.O.; et al. Exploring the Potential of Small Water Bodies as an Integrative Management Tool for Fisheries Production. Fish. Manag. Ecol. 2022, 29, 254–268. [Google Scholar] [CrossRef]
- Weis, J.S.; Smith, G.; Zhou, T.; Santiago-Bass, C.; Weis, P. Effects of Contaminants on Behavior: Biochemical Mechanisms and Ecological Consequences: Killifish from a Contaminated Site Are Slow to Capture Prey and Escape Predators; Altered Neurotransmitters and Thyroid May Be Responsible for This Behavior, Which Ma. Bioscience 2001, 51, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, N.W.; Munday, P.L. Effects of Climate Change on Fish Reproduction and Early Life History Stages. Mar. Freshw. Res. 2011, 62, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Al Bakri, D. A Study on Selected Water Quality Parameters along the River Buriganga, Bangladesh. Iran. J. Energy Environ. 2010, 1, 81–92. [Google Scholar]
- Kibria, M.M.; Islam, N.; Billah, M.; Shawrob, K.S.M.; Rumi, M.H.; Siddiki, A.Z. Complete Mitochondrial Genome Sequence of Catla Catla (Hamilton, 1822) from the Halda River of Bangladesh. Mitochondrial DNA Part B 2020, 5, 3215–3217. [Google Scholar] [CrossRef] [PubMed]
- Raihan, F.; Ondrasek, G.; Islam, M.S.; Maina, J.M.; Beaumont, L.J. Combined Impacts of Climate and Land Use Changes on Long-Term Streamflow in the Upper Halda Basin, Bangladesh. Sustainability 2021, 13, 12067. [Google Scholar] [CrossRef]
- Islam, M.R.; Hossain, M.A.; Afrose, F.; Roy, N.C.; Iqbal, M.M. Effect of Temperature on the Growth Performance, Haematological Properties and Histomorphology of Gill, Intestine and Liver Tissues in Juvenile Butter Catfish Ompok Bimaculatus. Aquac. Fish Fish. 2022, 2, 277–286. [Google Scholar] [CrossRef]
- Barange, M.; Holsman, K.; Hollowed, A.; Ito, S.; Bograd, S.; Hazen, E.; King, J.; Mueter, F.; Perry, R.I. Climate Change Impacts, Vulnerabilities and Adaptations: North Pacific and Pacific Arctic Marine Fisheries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Volume 627, ISBN 9789251306079. [Google Scholar]
- Lam, V.W.Y.; Allison, E.H.; Bell, J.D.; Blythe, J.; Cheung, W.W.L.; Frölicher, T.L.; Gasalla, M.A.; Sumaila, U.R. Climate Change, Tropical Fisheries and Prospects for Sustainable Development. Nat. Rev. Earth Environ. 2020, 1, 440–454. [Google Scholar] [CrossRef]
- Zeug, S.C.; Winemiller, K.O. Relationships between Hydrology, Spatial Heterogeneity, and Fish Recruitment Dynamics in a Temperate Floodplain River. River Res. Appl. 2008, 24, 90–102. [Google Scholar] [CrossRef]
- Saimon, M.K.; Mustafa, M.G.; Sarker, B.S.; Hossain Belal, M.; Rahman, M.M. Marketing Channels of Indian Carp Fry Collected from Halda River and Livelihood of the Fry Traders. Asian J. Agric. Res. 2016, 10, 28–37. [Google Scholar] [CrossRef]
- Hossain, M.; Patra, P.K. Water Pollution Index—A New Integrated Approach to Rank Water Quality. Ecol. Indic. 2020, 117, 106668. [Google Scholar] [CrossRef]
- Government of the People’s Republic of Bangladesh. Environmental Quality Standard (EQS); Bangladesh Gazette, registered nr. DA-1, Ministry of Environment, Government of Bangladesh Secretariat: Dhaka, Bangladesh, 1997.
- Uddin, M.; Alam, M.; Mobin, M.; Miah, M. An Assessment of the River Water Quality Parameters: A Case of Jamuna River. J. Environ. Sci. Nat. Resour. 2014, 7, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.; Razzaque, A.; Hoque, M.; Roy, S.; Hossain, M. Investigation of Effluent Quality from an Effluent Treatment Plant of a Textile Industry, Fakir Knitwear Ltd. Narayangonj, Bangladesh. J. Environ. Sci. Nat. Resour. 2015, 8, 25–31. [Google Scholar] [CrossRef] [Green Version]
- FAO Wastewater Treatment and Use in Agriculture—FAO Irrigation and Drainage Paper 47; FAO: Rome, Italy, 2004; Volume 47, ISBN 9253042192.
- Zhao, J.; Fu, G.; Lei, K.; Li, Y. Multivariate Analysis of Surface Water Quality in the Three Gorges Area of China and Implications for Water Management. J. Environ. Sci. 2011, 23, 1460–1471. [Google Scholar] [CrossRef]
- Hacioglu, N.; Dulger, B. Monthly Variation of Some Physico-Chemical and Microbiological Parameters in Saricay Stream (Canakkale, Turkey). Fresenius Environ. Bull. 2010, 19, 986–990. [Google Scholar]
- Kais, S.M.; Islam, M.S. Perception of Climate Change in Shrimp-Farming Communities in Bangladesh: A Critical Assessment. Int. J. Environ. Res. Public Health 2019, 16, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Azadi, M.A.; Nasiruddin, M. Water Quality Index of Halda River, Southeastern Bangladesh. Am. J. Environ. Eng. 2020, 10, 59–68. [Google Scholar] [CrossRef]
- Dey, M.; Akter, A.; Islam, S.; Chandra Dey, S.; Choudhury, T.R.; Fatema, K.J.; Begum, B.A. Assessment of Contamination Level, Pollution Risk and Source Apportionment of Heavy Metals in the Halda River Water, Bangladesh. Heliyon 2021, 7, e08625. [Google Scholar] [CrossRef]
- Akter, A.; Ali, M.H. Environmental Flow Requirements Assessment in the Halda River, Bangladesh. Hydrol. Sci. J. 2012, 57, 326–343. [Google Scholar] [CrossRef]
- Sultana, M.A.; Pandit, D.; Barman, S.K.; Tikadar, K.K.; Tasnim, N.; Fagun, I.A.; Hussain, M.A.; Kunda, M. A Review of Fish Diversity, Decline Drivers, and Management of the Tanguar Haor Ecosystem: A Globally Recognized Ramsar Site in Bangladesh. Heliyon 2022, 8, e11875. [Google Scholar] [CrossRef]
- Kadir, A.; Ahmed, Z.; Uddin, M.M.; Xie, Z.; Kumar, P. Integrated Approach to Quantify the Impact of Land Use and Land Cover Changes on Water Quality of Surma River, Sylhet, Bangladesh. Water 2021, 14, 17. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Singh, G. Culture Fisheries in Village Ponds: A Multi-Location Study in Haryana, India. Agric. Biol. J. N. Am. 2010, 1, 961–968. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Devi, P. Water Quality Guidelines for the Management of Pond Fish Culture. Int. J. Environ. Sci. 2013, 3, 1980–2009. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Islam, M.S. Analysis of Water Quality of the Meghna River Using Multivariate Analyses and Rpi. J. Asiat. Soc. Bangladesh Sci. 2017, 43, 23–35. [Google Scholar] [CrossRef]
- Aziz, M.S.B.; Hasan, N.A.; Mondol, M.M.R.; Alam, M.M.; Haque, M.M. Decline in Fish Species Diversity Due to Climatic and Anthropogenic Factors in Hakaluki Haor, an Ecologically Critical Wetland in Northeast Bangladesh. Heliyon 2021, 7, e05861. [Google Scholar] [CrossRef]
- Real, M.K.H.; Khanam, N.; Mia, M.Y.; Nasreen, M. Assessment of Water Quality and Microbial Load of Dhaleshwari River Tangail, Bangladesh. Adv. Microbiol. 2017, 07, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Hossen, B.; Yabar, H.; Faruque, M.J. Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh. Land 2022, 11, 1784. [Google Scholar] [CrossRef]
- Rakib, M.S.I.; Tuhin, T.H.; Tajik, M.A.; Putul, I.Z.; Tuhin, M.T.H.; Tajik, M.A.; Zuthi, M.F.R. Assessment of Salinity Content in Halda River. In Proceedings of the International Conference on Engineering Research and Education, Sylhet 3114, Bangladesh, 26–28 February 2021. [Google Scholar]
- Asaduzzaman, M.; Hossain, M.A.; Mian, S.; Iqbal, M.M. Effects of Salinity on Growth Performance and Blood Parameters of Butter Catfish, Ompok Bimaculatus. Aquat. Sci. Eng. 2022, 37, 58–63. [Google Scholar] [CrossRef]
- Armstead, M.Y.; Bitzer-Creathers, L.; Wilson, M. The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia Dubia. PLoS ONE 2016, 11, e0165683. [Google Scholar] [CrossRef] [Green Version]
- Grzywna, A.; Sender, J. The Assessment of the Amount of Water Pollution and Its Suitability for Drinking of the Tyśmienica River Basin, Poland. Environ. Monit. Assess. 2021, 193, 315. [Google Scholar] [CrossRef]
- Karim, M.A.; Uddin, M.H.; Barua, S.; Nath, B.; Chowdhury, A.I.; Hoque, M.A.; Rahman, I.M.M. Pollution Source Identification of Halda River Water Using Field Observation, Laboratory Analysis and GIS Technique. Orient. J. Chem. 2019, 35, 1480–1490. [Google Scholar] [CrossRef] [Green Version]
- Howladar, M.F.; Chakma, E.; Jahan Koley, N.; Islam, S.; Al Numanbakth, M.A.; Ahmed, Z.; Chowdhury, T.R.; Akter, S. The Water Quality and Pollution Sources Assessment of Surma River, Bangladesh Using, Hydrochemical, Multivariate Statistical and Water Quality Index Methods. Groundw. Sustain. Dev. 2021, 12, 100523. [Google Scholar] [CrossRef]
- Bhuyain, A.S.M.S.R.; Bhattacharjee, D.; Hasan, M.; Kumar Sarker, U.; Author, C.; Motaher Hossain, M.; Kubra Mim, K. Seasonal Variation of Water Quality Parameters of the Surma River in Sylhet Region, Bangladesh. Int. J. Fish. Aquat. Stud. 2020, 8, 212–216. [Google Scholar]
- Mamun, S.; Roy, S.; Rahaman, M.; Jahan, M.; Islam, M. Status of Fisheries Resources and Water Quality of Tanguar Haor. J. Environ. Sci. Nat. Resour. 2015, 6, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, A.; Islam, M.T.; Islam, M.S.; Mia, M.M.; Bhuyan, M.S.; Kibria, M.M.; Muhammad Sharif, A.S.; Kamal, A.H.M. Risk and Coping Mechanisms of the Carp Spawn Fishing Community of the Halda River, Bangladesh. Bangladesh J. Zool. 2017, 45, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A. Stratigraphic Evolution and Geochemistry of the Neogene Surma Group, Surma Basin, Sylhet; Department of Geology, University of Oulu: Finland Oulu, Finland, 2002; ISBN 9514267117. [Google Scholar]
- Master Plan of Haor Area, Volume II: Main Report; Centre for Environemtal and Geographic Information Services, Government of the People’s Republic of Bangladesh, Ministry of Water Resources, Bangladesh Haor and Wetland Development Board: Dhaka, Bangladesh, 2012; Volume 2.
Years | Months | Stations | Transects |
---|---|---|---|
2021–2022 |
|
|
|
Data Type | River/Water Area | Station |
---|---|---|
Water Level | Halda | Panchpukuria (SW119.1) |
Surma-Meghna | Sylhet (SW267) | |
Jadukata | Laurergarh Saktiarkhola (SW131.5) | |
Discharge | Halda | Panchpukuria (SW119.1) |
Surma-Meghna | Sylhet (SW267) | |
Jadukata | Laurergarh Saktiarkhola (SW131.5) | |
Rainfall | - | Fatikchari (CL311) |
- | Sylhet (CL128) | |
- | Laurergarh (CL49) |
Grade | Value |
---|---|
Excellent | <0.5 |
Good | 0.5–0.75 |
Mandatory polluted | 0.75–1 |
Extremely polluted | >1 |
Parameters | Standard Value | Station | ||
---|---|---|---|---|
Halda River | Surma River | Tanguar Haor | ||
Temperature (°C) | 20–30 [33] | 30.69 ± 0.13 a | 29.73 ± 0.20 b | 29.73 ± 0.20 b |
DO (mg/L) | 4–6 [34] | 5.87 ± 0.12 a | 5.80 ± 0.12 a | 5.90 ± 0.11 a |
TDS (mg/L) | <400 [34] | 108.85 ± 15.57 a | 40.05 ± 0.77 b | 38.81 ± 0.60 b |
Salinity (ppt) | - | 0.08 ± 0.11 a | 0.023 ± 0.003 b | 0.019 ± 0.001 b |
Turbidity (cm) | - | 128.03 ± 12.53 a | 21.55 ± 0.67 b | 20.71 ± 0.29 b |
Conductivity (µS/cm) | 800–1000 [35] | 176 ± 17 a | 85 ± 0.5 b | 85 ± 0.9 b |
pH | 6.5–8.5 [32,36] | 7.02 ± 0.04 a | 6.80 ± 0.29 b | 6.97 ± 0.31 b |
Ammonia (mg/L) | - | 0.18 ± 0.02 a | 0.18 ± 0.04 a | 0.18 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akther, K.R.; Schneider, P.; Mian, S.; Hossain, M.A.; Roy, N.C. Assessment of the Hydrological Conditions of Carps Spawning Grounds in the Sylhet Haor Basins, and the Halda River System, Bangladesh. Water 2023, 15, 855. https://doi.org/10.3390/w15050855
Akther KR, Schneider P, Mian S, Hossain MA, Roy NC. Assessment of the Hydrological Conditions of Carps Spawning Grounds in the Sylhet Haor Basins, and the Halda River System, Bangladesh. Water. 2023; 15(5):855. https://doi.org/10.3390/w15050855
Chicago/Turabian StyleAkther, Kazi Rabeya, Petra Schneider, Sohel Mian, Mohammad Amzad Hossain, and Nirmal Chandra Roy. 2023. "Assessment of the Hydrological Conditions of Carps Spawning Grounds in the Sylhet Haor Basins, and the Halda River System, Bangladesh" Water 15, no. 5: 855. https://doi.org/10.3390/w15050855