The Current Status, Energy Implications, and Governance of Urban Wastewater Treatment and Reuse: A System Analysis of the Beijing Case
Abstract
:1. Introduction
2. Related Work
3. Methodology
4. Results and Outcomes
4.1. The Current Status of WWTPs in Beijing
4.1.1. The Scale and Ownership of WWTPs and Their Treatment Processes at the Municipal Scale
4.1.2. The Spatial Distribution, Treatment Capacity, and Operational Load of WWTPs at the District Scale
4.2. Energy Consumption of Selected WWTPs in Beijing
4.2.1. Five Energy-Intensive Subprocesses in a Typical WWTP
4.2.2. The Energy Consumption Ratios of the Five Energy-Intensive Subprocesses in Representative WWTPs
4.2.3. Energy Intensity by Treatment Capacity and MBR Treatment Technology in Selected WWTPs
4.3. Governance Structure for Urban Wastewater Treatment and Reuse in Beijing
4.3.1. The Structure of the Management Organization for Wastewater Recycling and Reuse in Beijing
4.3.2. The Structure of Governance Policies for Wastewater Treatment and Reuse in Beijing
5. Discussions and Policy Implications
5.1. Data Challenges due to Inconsistent Information on WWTPs
5.2. Blue Water Factory as a Promising Approach to Reducing Energy Consumption
5.3. Two Strategies for the Normalization of the Current Governance Structure
5.4. Limitations and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Water in the West. Water and Energy Nexus: A Literature Review. A joint program of Stanford Woods Institute for the Environment and Bill Lane Center for the American West. 2013. Available online: https://waterinthewest.stanford.edu/sites/default/files/Water-Energy_Lit_Review.pdf (accessed on 15 February 2022).
- Su, H.; Yi, H.; Gu, W.; Wang, Q.; Liu, B.; Zhang, B. Cost of raising discharge standards A plant by plant assessment from wastewater sector in China. J. Environ. Manag. 2022, 308, 114642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, F.; Yang, F.; Feng, D.; Pan, T.; Liao, H. Analyzing greenhouse gas emissions from municipal wastewater treatment plants using pollutants parameter normalizing method: A case study of Beijing. J. Clean. Prod. 2022, 376, 134093. [Google Scholar] [CrossRef]
- Ahmad, S.; Jia, H.; Chen, Z.; Li, Q.; Xu, C. Water-energy nexus and energy efficiency: A systematic analysis of urban water systems. Renew. Sustain. Energy Rev. 2020, 134, 110381. [Google Scholar] [CrossRef]
- Lee, M.; Keller, A.A.; Chiang, P.-C.; Den, W.; Wang, H.; Hou, C.-H.; Wu, J.; Yan, J. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy 2017, 205, 589–601. [Google Scholar] [CrossRef]
- Vakilifard, N.; Anda, M.; Bahri, P.A.; Ho, G. The role of water-energy nexus in optimising water supply systems—Review of techniques and approaches. Renew. Sustain. Energy Rev. 2018, 82, 1424–1432. [Google Scholar] [CrossRef]
- Rodríguez-Villanueva, P.; Sauri, D. Wastewater Treatment Plants in Mediterranean Spain: An Exploration of Relations between Water Treatments, Water Reuse, and Governance. Water 2021, 13, 1710. [Google Scholar] [CrossRef]
- Shehabi, A.; Stokes, J.R.; Horvath, A. Energy and air emission implications of a decentralized wastewater system. Environ. Res. Lett. 2012, 7, 024007. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Kollmann, R.; Neugebauer, G.; Kretschmer, F.; Truger, B.; Kindermann, H.; Stoeglehner, G.; Ertl, T.; Narodoslawsky, M. Renewable energy from wastewater—Practical aspects of integrating a wastewater treatment plant into local energy supply concepts. J. Clean. Prod. 2017, 155, 119–129. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Safder, U.; Nguyen, X.Q.N.; Yoo, C.K. Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant. Energy 2020, 191, 116570. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, S.; Chen, J.; He, M.; Yang, W. Operational energy performance assessment system of municipal wastewater treatment plants. Water Sci. Technol. 2010, 62, 1361–1370. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, B. Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis. Appl. Energy 2021, 289, 116680. [Google Scholar] [CrossRef]
- Niu, K.; Wu, J.; Qi, L.; Niu, Q. Energy intensity of wastewater treatment plants and influencing factors in China. Sci. Total Environ. 2019, 670, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shao, Y.; Wang, H.; Liu, G.; Qi, L.; Xu, X.; Liu, S. Current operation state of wastewater treatment plants in urban China. Environ. Res. 2021, 195, 110843. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Y.; Chen, J.; Huang, M.; Wang, P.; Wang, G.; Zou, W.; Zhou, G. Assessment of energy consumption of municipal wastewater treatment plants in China. J. Clean. Prod. 2019, 228, 399–404. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Varis, O. Integrated water resources management: Evolution, prospects and future challenges. Sustain. Sci. Pract. Policy 2005, 1, 15–21. [Google Scholar] [CrossRef]
- Rotmans, J.; Kemp, R.; Van Asselt, M. More evolution than revolution: Transition management in public policy. Foresight 2001, 3, 15–31. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef]
- Cong, W.; Li, X.; Qian, Y.; Shi, L. Polycentric approach of wastewater governance in textile industrial parks: Case study of local governance innovation in China. J. Environ. Manag. 2021, 280, 111730. [Google Scholar] [CrossRef] [PubMed]
- Malisa, R.; Schwella, E.; Kidd, M. From ‘government’ to ‘governance’: A quantitative transition analysis of urban wastewater management principles in Stellenbosch Municipality. Sci. Total Environ. 2019, 674, 494–511. [Google Scholar] [CrossRef]
- Lasut, M.T.; Jensen, K.R.; Shivakoti, G. Analysis of constraints and potentials for wastewater management in the coastal city of Manado, North Sulawesi, Indonesia. J. Environ. Manag. 2008, 88, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Breitenmoser, L.; Quesada, G.C.; Anshuman, N.; Bassi, N. Perceived drivers and barriers in the governance of wastewater treatment and reuse in India: Insights from a two-round Delphi study. Resour. Conserv. Recycl. 2022, 182, 106285. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Wang, X.; Xu, Y.; Liao, Y.; Wan, Z.; Tang, N. Investigating the spatiotemporal dynamic evolution and driving factors of wastewater treatment efficiency in the context of China’s River Chief system. Ecol. Indic. 2021, 129, 107991. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Si, Y.; Xu, L.; Liu, X.; Li, D.; Liu, Y. A social sensing approach for everyday urban problem-handling with the 12345-complaint hotline data. Comput. Environ. Urban Syst. 2022, 94, 101790. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.; Ortiz, W.; Dienst, C.; Gröne, M.-C. Energising the WEF nexus to enhance sustainable development at local level. J. Environ. Manag. 2018, 223, 409–416. [Google Scholar] [CrossRef]
- Qian, X.; Yu, J.; Dai, R. A New Discipline of Science The Study of Open Complex Giant System and Its Methodology. Chin. J. Syst. Eng. Electron. 1993, 4, 2–12. [Google Scholar]
- Keremane, G.B.; McKay, J. Critical Success Factors (CSFs) for private sector involvement in wastewater management: The Willunga Pipeline case study. Desalination 2009, 244, 248–260. [Google Scholar] [CrossRef]
- He, Z.; Chen, S.; Li, Y. Research progress of MBR in rural domestic wastewater treatment. J. Environ. Eng. Technol. 2022, 12, 137–144. [Google Scholar]
- Van Bentem, A.G.N.; Petri, C.P.; Schyns, P.F.T.; van der Roest, H.F. Membrane Bioreactors-Operation and Results of an MBR Wastewater Treatment Plant; IWA Publishing: London, UK, 2007. [Google Scholar]
- Feng, S.; Li, Z.; Feng, K. Summarization and discussion of reclaimed water treatment process in Beijing central area. Water Wastewater Eng. 2020, 46, 20–24. [Google Scholar]
- Friedler, E.; Pisanty, E. Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making. Water Res. 2006, 40, 3751–3758. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, J.; Li, Y. Energy saving and consumption reducing for the modified A2/O- ultrafiltration membrane combined process in a reclaimed water plant. Ind. Water Treat. 2018, 38, 106–109. [Google Scholar]
- Song, X.; Liu, J.; Lin, J.; Li, J.; Li, C.; Jiang, H.; Wang, H.; Yin, F. The development direction and practice of energy self-sufficiency sewage treatment plants in China under Carbon Neutral Era. Acta Sci. Circumstantiae 2022, 42, 1–11. [Google Scholar]
- Yang, M.; Li, Y.; Wei, Y.; Lü, J.; Yu, D.W.; Liu, J.B.; Fan, Y.B. Energy Consumption Comparison and Energy Saving Approaches for Different Wastewater Treatment Processes in a Large-scale Reclaimed Water Plant. Environ. Sci. 2015, 36, 2203–2210. [Google Scholar]
- Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy consumption for water use cycles in different countries: A review. Appl. Energy 2016, 178, 868–885. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, S.; Du, S.; Chen, Y.; Li, X.; Wang, R.; Luo, J.; Pan, Z.; Tan, Z. Assessment of upgrading WWTP in southwest China: Towards a cleaner production. J. Clean. Prod. 2021, 326, 129381. [Google Scholar] [CrossRef]
- Yang, S. Energy consumption in urban wastewater treatment plant. Water Wastewater Eng. 1984, 6, 15–19. [Google Scholar] [CrossRef]
- Yang, A. Energy Conservation Method and Technology of Aeration in Municipal Wastewater Treatment Plant. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 2012. [Google Scholar]
- Ma, Y.; Peng, Y.; Wang, X. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal. Desalination 2009, 246, 534–544. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Lv, Z.; Lv, Z.; Jiang, B.; Chen, C.; Liu, X.; Yu, L. Analysis of Approaches and Effects of Energy Saving and Consumption Reduction in a Large Scale Wastewater Treatment Plant in Beijing. China Water Wastewater 2019, 35, 31–34. [Google Scholar]
- Guven, H.; Ersahin, M.E.; Ozgun, H.; Ozturk, I.; Koyuncu, I. Energy and material refineries of future: Wastewater treatment plants. J. Environ. Manag. 2023, 329, 117130. [Google Scholar] [CrossRef] [PubMed]
- Beijing Municipal Ecology and Environment Bureau (BMEEB). 2021 Report on the State of the Ecology and Environment in Beijing. Beijing; 2022. Available online: http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718881/1718882/index.html (accessed on 8 February 2022).
- Wang, Y.; Zhang, R.; Worden, S.; Cao, H.; Li, C. Public participation in environmental governance initiatives of chemical industrial parks. J. Clean. Prod. 2021, 305, 127092. [Google Scholar] [CrossRef]
- Ma, D.; Tang, Y.; Yu, Z. The countermeasures for the development of reclaimed water utilization in Beijing. J. Northwest Univ. Nat. Sci. Ed. 2020, 50, 779–786. [Google Scholar] [CrossRef]
- Beijing Water Authority (BWA). Beijing Water Resources Bulletin. Beijing; 2020. Available online: http://swj.beijing.gov.cn/zwgk/szygb/ (accessed on 8 February 2022).
- Liu, L.; Zhao, Z.; Zhu, R.; Qin, X. Can national environmental protection supervision and control have a lasting impact on corporate production efficiency?—An empirical study based on the multi-phase difference-in-difference model. Environ. Sci. Pollut. Res. 2022, 24, 56136–56153. [Google Scholar] [CrossRef] [PubMed]
- Lu, J. Can the central environmental protection inspection reduce transboundary pollution? Evidence from river water quality data in China. J. Clean. Prod. 2022, 332, 130030. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Bi, J.; Liu, M.; Li, S. Does the central environmental inspection actually work? J. Environ. Manag. 2020, 253, 109602. [Google Scholar] [CrossRef]
- Xiang, C.; van Gevelt, T. Central inspection teams and the enforcement of environmental regulations in China. Environ. Sci. Policy 2020, 112, 431–439. [Google Scholar] [CrossRef]
- Burns, J.P.; Wang, X. Civil Service Reform in China: Impacts on Civil Servants’ Behaviour. China Q. 2010, 201, 58–78. [Google Scholar] [CrossRef]
- Caprotti, F.; Liu, D. Platform urbanism and the Chinese smart city: The co-production and territorialisation of Hangzhou City Brain. GeoJournal 2020, 87, 1559–1573. [Google Scholar] [CrossRef]
- Cui, J. The Adaptive Implementation of Policy in Local Governance: Case Studies on Y District and H Town. J. Public Manag. 2022, 19, 52–64. [Google Scholar]
- Scanlon, B.R.; Ruddell, B.L.; Reed, P.M.; Hook, R.I.; Zheng, C.; Tidwell, V.C.; Siebert, S. The food-energy-water nexus: Transforming science for society. Water Resour. Res. 2017, 53, 3550–3556. [Google Scholar] [CrossRef]
- Souza, L.; Bueno, C. City Information Modelling as a support decision tool for planning and management of cities: A systematic literature review and bibliometric analysis. Build. Environ. 2022, 207, 108403. [Google Scholar] [CrossRef]
- Hao, X.; Li, J.; Wu, Y.; Li, S.; Li, F.; Wang, Z.; Cai, R.; van Loosdrecht, M. Blue Water Factories (BWFs): Framework and Technologies. China Water Wastewater 2022. Available online: https://kns.cnki.net/kcms/detail/12.1073.TU.20220823.1342.002.html (accessed on 15 September 2022).
- Xiong, Y.-T.; Zhang, J.; Chen, Y.-P.; Guo, J.-S.; Fang, F.; Yan, P. Geographic distribution of net zero energy wastewater treatment in China. Renew. Sustain. Energ. Rev. 2021, 150, 111462. [Google Scholar] [CrossRef]
- Sanscartier, D.; MacLean, H.L.; Saville, B. Electricity production from anaerobic digestion of household organic waste in Ontario: Techno-economic and GHG emission analyses. Environ. Sci. Technol. 2012, 46, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- International Water Association (IWA). 200–1000% Energy Recovery: Tapping Power of Wastewater. IWA Cluster for Resource Recovery in Water. 2021. Available online: https://www.sohu.com/a/453613330_120053850 (accessed on 10 February 2022).
- Hao, X.; Huang, X.; Liu, G.; Hu, Y. Energy deficits and their potential replenishments of wastewater treatment operation towards carbon neutral. China Water Wastewater 2014, 30, 1–6. [Google Scholar]
- Zhao, Y.; Zhang, X.; Wang, Y. Evaluating the effects of campaign-style environmental governance: Evidence from Environmental Protection Interview in China. Environ. Sci. Pollut. Res. 2020, 27, 28333–28347. [Google Scholar] [CrossRef] [PubMed]
- Klyza, C.; Sousa, D. American Environmental Policy: Beyond Gridlock; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Jin, L.; Liu, J.; Han, G.; Liu, W.; Huber-Lee, A. The Current Status, Energy Implications, and Governance of Urban Wastewater Treatment and Reuse: A System Analysis of the Beijing Case. Water 2023, 15, 630. https://doi.org/10.3390/w15040630
Huang D, Jin L, Liu J, Han G, Liu W, Huber-Lee A. The Current Status, Energy Implications, and Governance of Urban Wastewater Treatment and Reuse: A System Analysis of the Beijing Case. Water. 2023; 15(4):630. https://doi.org/10.3390/w15040630
Chicago/Turabian StyleHuang, Daohan, Lin Jin, Jie Liu, Guoyi Han, Wei Liu, and Annette Huber-Lee. 2023. "The Current Status, Energy Implications, and Governance of Urban Wastewater Treatment and Reuse: A System Analysis of the Beijing Case" Water 15, no. 4: 630. https://doi.org/10.3390/w15040630
APA StyleHuang, D., Jin, L., Liu, J., Han, G., Liu, W., & Huber-Lee, A. (2023). The Current Status, Energy Implications, and Governance of Urban Wastewater Treatment and Reuse: A System Analysis of the Beijing Case. Water, 15(4), 630. https://doi.org/10.3390/w15040630