# Inflow Scenario Generation for the Ethiopian Hydropower System

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area, Data, and Materials

^{2}and an elevation of 1787 m. The lake serves as the reservoir of the Beles hydropower plant with seven spillway gates called Charachara Gates. The spilled water at Charachara is used partly for the Tis Abay fall(Tis Esat, tourist attraction) and partly for power generation at Tis Abay I and II. However, there is yet to be available data about the percentage of water that will be used for power production. Therefore, we treat the Tis Abay I and II power plants as run-of-the-river throughout this study. As a result, we have eight reservoirs, and the generation largely depends on the maximum reservoir level attained during the rainy season (July to September).

- Plant’s unique characteristics in relation to the water level (Gibe 1, Gibe 2, and Gibe 3)
- Load forecast and history of generation.
- Downstream facilities (Beles, Fincha, and Koka)

#### 2.2. Methods

#### 2.2.1. Estimation of Historical Inflow Time Series

^{3}/s of water released during one hour.

#### 2.2.2. Time Series Analysis and Stochastic Model Estimation

#### Daily Time Resolution

#### Weekly Time Resolution

#### 2.2.3. Residual Diagnosis

#### Daily Time Resolution

#### Weekly Time Resolution

## 3. Result and Discussion

#### 3.1. Synthetic Historical Inflow Time Series

#### 3.2. Scenario Generation

#### 3.2.1. Daily Time Resolution

#### 3.2.2. Weekly Time Resolution

#### 3.3. Evaluation of the Generated Inflow Scenarios

## 4. Conclusions and Recommendations

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ACF | autocorrelation function |

AR | autoregressive |

ARFIMA | autoregressive fraction integrated moving average model |

ARIMA | autoregressive integrated moving average |

DAV | data access viewer |

DOF | degree of freedom |

EEP | Ethiopian Electric power |

GIS | geographic information systems |

MA | moving average |

MAE | mean annual energy |

MAI | mean annual inflow |

NEXRA | Next Generation Weather Radar |

PAR | periodic autoregressive |

PARMA | periodic autoregressive-moving average |

PRMS | precipitation-runoff modeling system |

SARIM | seasonal autoregressive integrated moving average model |

SDDP | stochastic dual dynamic programming |

SWAT | surface water assessment tool |

## References

- International Hydropower Association. 2022 Hydropower Status Report; Hydropower.org: Lodon, UK, 2022. [Google Scholar]
- Daniel, E.B. Watershed Modeling and its Applications: A State-of-the-Art Review. Open Hydrol. J.
**2011**, 5, 26–50. [Google Scholar] [CrossRef] [Green Version] - Markstrom, S.L.; Regan, R.S.; Hay, L.E.; Viger, R.J.; Webb, R.M.T.; Payn, R.A.; LaFontaine, J.H. 2015, PRMS-IV, the Precipitation-Runoff Modeling System Version IV; U.S. Geological Survey Techniques and Methods: Lakewood, CO, USA, 2015; book 6, chap. B7; 158p. [Google Scholar]
- Teng, F.; Huang, W.; Cai, Y.; Zheng, C.; Zou, S. Application of hydrological model PRMS to simulate daily rainfall runoff in Zamask–Yingluoxia subbasin of the Heihe River Basin. Water
**2017**, 9, 769. [Google Scholar] [CrossRef] [Green Version] - Daniel, E.B.; Camp, J.V.; Leboeuf, E.J.; Penrod, J.R.; Abkowitz, M.D.; Dobbins, J.P. Watershed Modeling Using GIS Technology: A Critical Review. J. Spat. Hydrol.
**2010**, 10, 14–28. [Google Scholar] - Moon, J.; Srinivasan, R.; Jacobs, J.H. Stream flow estimation using spatially distributed rainfall in the Trinity River basin, Texas. Trans. ASAE
**2004**, 47, 1445–1451. [Google Scholar] [CrossRef] - Obeysekera, J.T.; Salas, J.D. Modeling of aggregated hydrologic time series. J. Hydrol.
**1986**, 86, 197–219. [Google Scholar] [CrossRef] - Stokelj, T.; Paravan, D.; Golob, R. Short and mid term hydro power plant reservoir inflow forecasting. In Proceedings of the PowerCon 2000—2000 International Conference on Power System Technology, Perth, Australia, 4–7 December 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 2, pp. 1107–1112. [Google Scholar] [CrossRef]
- Sharma, A.; O’Neill, R. A nonparametric approach for representing interannual dependence in monthly streamflow sequences. Water Resour. Res.
**2002**, 38, 5-1–5-10. [Google Scholar] [CrossRef] - Jimenez, C.; Mcleod, A.I.; Hipel, K.W. Stochastic Hydrology and Hydraulics Kalman filter estimation for periodic autoregressive-moving average models. In Stochastic Hydrology and Hydraulics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 3, pp. 227–240. [Google Scholar]
- Pereira, G.; Veiga, A. PAR(p)-vine copula based model for stochastic streamflow scenario generation. Stoch. Environ. Res. Risk Assess.
**2018**, 32, 833–842. [Google Scholar] [CrossRef] - Wang, W.; Dong, Z.; Zhu, F.; Cao, Q.; Chen, J.; Yu, X. A stochastic simulation model for monthly river flow in dry season. Water
**2018**, 10, 1654. [Google Scholar] [CrossRef] [Green Version] - De Almeida Pereira, G.A.; Souza, R.C. Long Memory Models to Generate Synthetic Hydrological Series. Math. Probl. Eng.
**2014**, 2014, 823046. [Google Scholar] [CrossRef] - Dires, F.G.; Amelin, M.; Bekele, G. Deterministic Hydropower Simulation Model for Ethiopia. In Proceedings of the 2021 IEEE Madrid PowerTech, PowerTech 2021—Conference Proceedings, Madrid, Spain, 28 June–2 July 2021. [Google Scholar] [CrossRef]
- POWER|Data Access Viewer. Resources NASA Prediction of Worldwide Energy 2022, POWER Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 19 November 2022).
- Analyze Time Series Data Using Econometric Modeler—MATLAB and Simulink—MathWorks Nordic, Help Center Documentation. Available online: https://se.mathworks.com/help/econ/econometric-modeler-overview.html (accessed on 21 November 2022).
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2008; pp. 1–746. [Google Scholar] [CrossRef]
- Hyndman, R.J. George Athanasopoulos. 3.3 Residual Diagnostics|Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]

**Figure 2.**Historical pattern of water levels for Gibe 1, Gibe 3, Koka, and Tekezé reservoirs; source: EEP.

**Figure 8.**Actual water level versus synthetic inflow in 2015–2016 and 2018–2019 for Gibe 1 and Tekezé reservoirs.

**Figure 13.**Actual and simulated load shedding and generation schedule for sample reservoirs in April.

**Figure 15.**Actual reservoir content plus simulated reservoir content and spillage for the tree cases.

Power Plant | Coordinates °N, °E | Dam Height (m) | Maximum Level (m a.s.l) | Storage (Mm ^{3}) at Max. Level | Installed Capacity (MW) | Maximum Discharge (m ^{3}/s) | Average Energy (GWH) |
---|---|---|---|---|---|---|---|

Beles | 11.82, 36.92 | 35.00 | 1787.00 | 37,307.00 | 460.00 | 160.00 | 1867.00 |

M.Wakena | 7.225, 39.462 | 42.00 | 2522.90 | 875.00 | 153.00 | 60.00 | 543.00 |

Fincha | 9.789, 37.269 | 22.20 | 2219.00 | 964.00 | 134.00 | 29.68 | 760.00 |

Gibe I | 7.831, 37.322 | 41.00 | 1,671.55 | 863.00 | 210.00 | 100.00 | 722.00 |

Gibe II | 7.757, 37.562 | 46.50 | Diversion Weir | - | 420.00 | 98.12 | 1635.00 |

Gibe III | 6.844, 37.301 | 243.00 | 892.00 | 15,500.00 | 1870.00 | 2200.00 | 6500.00 |

Koka | 8.468, 39.156 | 23.80 | 1599.00 | 4250.00 | 42.00 | 144.00 | 110.00 |

Awash II | 8.468, 39.156 | river | run-of-river | - | 32.00 | 65.60 | 182.00 |

Awash III | 8.468, 39.156 | river | run-of-river | - | 32.00 | 66.20 | 182.00 |

Tekezé | 13.348, 38.742 | 188.00 | 1140.10 | 9310.00 | 300.00 | 184.00 | 1393.00 |

Am. Neshe | 9.789, 37.269 | 38.00 | 2232.50 | 526.10 | 97.00 | 18.70 | 35.00 |

Tis Abay I | 11.486, 37.587 | river | run-of-river | - | 12.00 | 114.00 | 33.70 |

Tis Abay II | 11.486, 37.587 | river | run-of-river | - | 72.00 | 114.00 | 359.00 |

Null Rejected | p-Value | Test Statistic | Critical Value | |
---|---|---|---|---|

1 | false | 0.27408 | 23.3047 | 31.4104 |

Parameter | Value | Standard Error | T Statistic | p Value |
---|---|---|---|---|

Constant | 0 | 0 | ||

MA{1} = ${\theta}_{1}$ | −1.403 | 0.045174 | −31.0574 | 9.0611 $\times {10}^{-212}$ |

MA{2} = ${\theta}_{2}$ | 0.28348 | 0.085036 | 3.3336 | 0.00085725 |

MA{3} = ${\theta}_{3}$ | 0.1482 | 0.058094 | 2.551 | 0.010741 |

SMA{1} = ${\Theta}_{365}$ | −0.77234 | 0.064318 | −12.0081 | 3.2218 $\times {10}^{-33}$ |

SMA{2} = ${\Theta}_{730}$ | 0.014517 | 0.070344 | 0.20637 | 0.8365 |

Variance | 3.0546 $\times {10}^{9}$ | 3.1855 $\times {10}^{-12}$ | 9.5891 $\times {10}^{21}$ | 0 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dires, F.G.; Amelin, M.; Bekele, G.
Inflow Scenario Generation for the Ethiopian Hydropower System. *Water* **2023**, *15*, 500.
https://doi.org/10.3390/w15030500

**AMA Style**

Dires FG, Amelin M, Bekele G.
Inflow Scenario Generation for the Ethiopian Hydropower System. *Water*. 2023; 15(3):500.
https://doi.org/10.3390/w15030500

**Chicago/Turabian Style**

Dires, Firehiwot Girma, Mikael Amelin, and Getachew Bekele.
2023. "Inflow Scenario Generation for the Ethiopian Hydropower System" *Water* 15, no. 3: 500.
https://doi.org/10.3390/w15030500