Impact Assessment of Livestock Production on Water Scarcity in a Watershed in Southern Brazil †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Human Water Consumption (HWC) and Livestock Water Consumption (LWC)
2.2.2. Water Availability (WA)
2.2.3. Environmental Water Requirement (EWR)
2.3. Water Scarcity Impact Assessment
2.3.1. Water Available Remaining (AWARE)
2.3.2. Blue Water Scarcity Index (BWSI)
2.4. Scenario Settings
Scenarios | WA | HWC | EWR | ||||||
---|---|---|---|---|---|---|---|---|---|
Runoff * | Q95 | Q90 | Q80 | Q95 | 50% Q95 | Pastor et al. [39] | Richter et al. [41] | ||
SC.1_AWARE | x | x | x | ||||||
SC.2_AWARE | x | x | x | ||||||
SC.3_AWARE | x | x | x | ||||||
SC.4_AWARE | x | x | x | ||||||
SC.5_AWARE | x | x | x | ||||||
SC.1_BWSI | x | x | x | ||||||
SC.2_BWSI | x | x | x | ||||||
SC.3_BWSI | x | x | x | ||||||
SC.4_BWSI | x | x | x | ||||||
SC.5_BWSI | x | x | x |
3. Results and Discussion
3.1. Monthly HWC, EWR and WA
3.2. Water Scarcity Impact Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Huo, Z.; Kisekka, I. Assessing Impacts of Climate Variability and Changing Cropping Patterns on Regional Evapotranspiration, Yield and Water Productivity in California’s San Joaquin Watershed. Agric. Water Manag. 2021, 250, 106852. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point. Synthesis Report 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031; 2022; Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2022-2031_f1b0b29c-en (accessed on 23 October 2023). [CrossRef]
- FAO and UN Water. Progress on Level of Water Stress. Global Status and Acceleration Needs for SDG Indicator 6.4.2; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Boulay, A.M.; Drastig, K.; Chapagain, A.; Charlon, V.; Civit, B.; DeCamillis, C.; De Souza, M.; Hess, T.; Hoekstra, A.Y.; Ibidhi, R.; et al. Building Consensus on Water Use Assessment of Livestock Production Systems and Supply Chains: Outcome and Recommendations from the FAO LEAP Partnership. Ecol. Indic. 2021, 124, 107391. [Google Scholar] [CrossRef]
- Weindl, I.; Bodirsky Benjamin, L.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Müller, C.D. Livestock Production and the Water Challenge of Future Food Supply: Implications of Agricultural Management and Dietary Choices. Glob. Environ. Chang. 2017, 47, 121–132. [Google Scholar] [CrossRef]
- Heinke, J.; Lannerstad, M.; Gerten, D.; Havlík, P.; Herrero, M.; Notenbaert, A.M.; Hoff, H.; Müller, C. Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resour. Res. 2020, 56, e2019WR026995. [Google Scholar] [CrossRef]
- Getirana, A. Extreme Water Deficit in Brazil Detected from Space. J. Hydrometeorol. 2016, 17, 591–599. [Google Scholar] [CrossRef]
- Getirana, A.; Libonati, R.; Cataldi, M. Brazil Is in Water Crisis—It Needs a Drought Plan. Nature 2021, 600, 218–220. [Google Scholar] [CrossRef]
- Agência Nacional de Águas (ANA). Conjuntura Dos Recursos Hídricos No Brasil 2021—Relatório Pleno; ANA: Brasília, Brazil, 2021. [Google Scholar]
- Agência Nacional de Águas (ANA). National Water Security Plan; ANA: Brasília, Brazil, 2019. [Google Scholar]
- Zhang, H.; Zhuo, L.; Xie, D.; Liu, Y.; Gao, J.; Wang, W.; Li, M.; Wu, A.; Wu, P. Water Footprints and Efficiencies of Ruminant Animals and Products in China over 2008–2017. J. Clean. Prod. 2022, 379, 134624. [Google Scholar] [CrossRef]
- Richter, B.D.; Bartak, D.; Caldwell, P.; Davis, K.F.; Debaere, P.; Hoekstra, A.Y.; Li, T.; Marston, L.; McManamay, R.; Mekonnen, M.M.; et al. Water Scarcity and Fish Imperilment Driven by Beef Production. Nat. Sustain. 2020, 3, 319–328. [Google Scholar] [CrossRef]
- Klopatek, S.C.; Oltjen, J.W. How Advances in Animal Efficiency and Management Have Affected Beef Cattle’s Water Intensity in the United States: 1991 Compared to 2019. J. Anim. Sci. 2022, 100, skac297. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Water Use in Livestock Production Systems and Supply Chains—Guidelines for Assessment (Version 1); FAO: Rome, Italy, 2019. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- de Almeida Castro, A.L.; Andrade, E.P.; de Alencar Costa, M.; de Lima Santos, T.; Ugaya, C.M.; de Figueirêdo, M.C. Applicability and Relevance of Water Scarcity Models at Local Management Scales: Review of Models and Recommendations for Brazil. Environ. Impact Assess. Rev. 2018, 72, 126–136. [Google Scholar] [CrossRef]
- Kaewmai, R.; Grant, T.; Eady, S.; Mungkalasiri, J.; Musikavong, C. Improving Regional Water Scarcity Footprint Characterization Factors of an Available Water Remaining (AWARE) Method. Sci. Total Environ. 2019, 681, 444–455. [Google Scholar] [CrossRef]
- Bontinck, P.A.; Grant, T.; Kaewmai, R.; Musikavong, C. Recalculating Australian Water Scarcity Characterisation Factors Using the AWARE Method. Int. J. Life Cycle Assess. 2021, 26, 1687–1701. [Google Scholar] [CrossRef]
- Andrade, E.P.; de Araújo Nunes, A.B.; de Freitas Alves, K.; Ugaya, C.M.; da Costa Alencar, M.; de Lima Santos, T.; da Silva Barros, V.; Pastor, A.V.; de Figueirêdo, M.C. Water Scarcity in Brazil: Part 1—Regionalization of the AWARE Model Characterization Factors. Int. J. Life Cycle Assess. 2020, 25, 2342–2358. [Google Scholar] [CrossRef]
- Usva, K.; Virtanen, E.; Hyvärinen, H.; Nousiainen, J.; Sinkko, T.; Kurppa, S. Applying Water Scarcity Footprint Methodologies to Milk Production in Finland. Int. J. Life Cycle Assess. 2019, 24, 351–361. [Google Scholar] [CrossRef]
- Payen, S.; Falconer, S.; Ledgard, S.F. Water Scarcity Footprint of Dairy Milk Production in New Zealand—A Comparison of Methods and Spatio-Temporal Resolution. Sci. Total Environ. 2018, 639, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B.; Hodges, D. From ISO14046 to Water Footprint Labeling: A Case Study of Indicators Applied to Milk Production in South-Eastern Australia. Sci. Total Environ. 2017, 599–600, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.N.; Uddin, M.M.; Ridoutt, B.; Hemme, T.; Peters, K. Benchmarking Consumptive Water Use of Bovine Milk Production Systems for 60 Geographical Regions: An Implication for Global Food Security. Glob. Food Sec. 2015, 4, 56–68. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water Footprint Accounting and Scarcity Indicators of Conventional and Organic Dairy Production Systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Palhares, J.C.P. Consumo de Água Na Produção Animal. Comun. Técnico 102 2013, 6. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/971085 (accessed on 23 October 2023).
- FEPAM. Critérios Técnicos Para o Licenciamento Ambiental de Novos Empreendimentos Destinados à Suinocultura; FEPAM: Porto Alegre, Brazil, 2014. [Google Scholar]
- Drastig, K.; Palhares, J.C.P.; Karbach, K.; Prochnow, A. Farm Water Productivity in Broiler Production: Case Studies in Brazil. J. Clean. Prod. 2016, 135, 9–19. [Google Scholar] [CrossRef]
- Carra, S.H.; Palhares, J.C.; Drastig, K.; Schneider, V.E. The Effect of Best Crop Practices in the Pig and Poultry Production on Water Productivity in a Southern Brazilian Watershed. Water 2020, 12, 3014. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Rio Grande do Sul State. Resolução n. 255—Estabelece Critérios Gerais de Outorga Das Captações de Água Subterrãnea: Usos Permitidos e Valores de Referência Das Vazões a Serem Outorgadas; Rio Grande do Sul State, Brazil: Porto Alegre, Brazil, 2017; p. 3. Available online: https://sema.rs.gov.br/upload/arquivos/202110/20113624-resolucao-crh-n-255-2017-criterios-e-vazoes-para-outorgas-subterraneas.pdf (accessed on 23 October 2023).
- Carra, S.H.; Palhares, J.C.; Drastig, K.; Schneider, V.E.; Ebert, L.; Giacomello, C.P. Water Productivity of Milk Produced in Three Different Dairy Production Systems in Southern Brazil. Sci. Total Environ. 2022, 844, 157117. [Google Scholar] [CrossRef]
- Agência Nacional de Águas (ANA). Manual de Usos Consuntivos Da Água No Brasi; ANA: Brasília, Brazil, 2019. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). IBGE Cidades. Available online: https://cidades.ibge.gov.br/ (accessed on 23 October 2023).
- ISO 14046; 2014 Environmental Management—Water Footprint—Principles, Requirements and Guidelines. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/43263.html (accessed on 23 October 2023).
- Agência Nacional de Águas (ANA). Sistema Nacional de Informações sobre Recursos Hídricos—HidroWeb. Available online: https://www.snirh.gov.br/hidroweb/apresentacao (accessed on 23 October 2023).
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for Environmental Flow Requirements in Global Water Assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef]
- STE—Serviço Técnico de Engenharia S/A. Plano de Bacia Taquari-Antas (STE); STE: Canoas, Brazil, 2011. Available online: https://sema.rs.gov.br/g040-bh-taquari-antas (accessed on 23 October 2023).
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA Consensus Characterization Model for Water Scarcity Footprints: Assessing Impacts of Water Consumption Based on Available Water Remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- Richter, B.D.; David, M.M.; Apse, C.; Konrad, C. A Presumptive Standard for Environmental Flow Protection. River Res. Appl. 2011, 28, 1312–1321. [Google Scholar] [CrossRef]
- Boulay, A.M.; Lenoir, L. Sub-National Regionalisation of the AWARE Indicator for Water Scarcity Footprint Calculations. Ecol. Indic. 2020, 111, 106017. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Climate Data—BDMEP/INMET. Available online: https://bdmep.inmet.gov.br/ (accessed on 23 October 2023).
- Reginato, P.A.R.; Strieder, A.J. Caracterização Hidrogeológica e Potencialidades Dos Aquíferos Fraturados Da Formação Serra Geral Na Região Nordeste Do Estado Do Rio Grande Do Sul. Rev. Bras. Geociências 2006, 36, 13–22. [Google Scholar]
- Todd, D.K. Groundwater Hydrology; John Wily Sons: Hoboken, NJ, USA, 1959. [Google Scholar]
- Boulay, A.M.; Bare, J.; De Camillis, C.; Döll, P.; Gassert, F.; Gerten, D.; Humbert, S.; Inaba, A.; Itsubo, N.; Lemoine, Y.; et al. Consensus Building on the Development of a Stress-Based Indicator for LCA-Based Impact Assessment of Water Consumption: Outcome of the Expert Workshops. Int. J. Life Cycle Assess. 2015, 20, 577–583. [Google Scholar] [CrossRef]
- Copley, M.A.; Wiedemann, S.G. Environmental Impacts of the Australian Poultry Industry. 1. Chicken Meat Production. Anim. Prod. Sci. 2022, 63, 489–504. [Google Scholar] [CrossRef]
- Palhares, J.C.P. Boas Práticas Hídricas Na Produção Leiteira; São Carlos, Brazil, 2016. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/148933/1/Comunicado105.pdf (accessed on 23 October 2023).
- de Avila, V.S.; Bellaver, C.; de Paiva, D.P.; Jaenisch, F.R.F.; Mazzuco, H.; Trevisol, I.M.; Palhares, J.C.P.; de Abreu, P.G.; Rosa, P.S. Boas Práticas de Produção de Frangos de Corte—Circular Técnica n. 51; Concórdia/SC, 2007. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/433206 (accessed on 23 October 2023).
- Souza, J.C.; Oliveira, P.A.; Tavares, J.M.; Zanuzzi, C.M.; Tremea, S.L.; Piekas, F.; Squezzato, N.C.; Zimmermann, L.A. Gestão Da Água Na Suinocultura; Embrapa Suínos e Aves: Concórdia, Brazil, 2016. [Google Scholar]
- Emater/RS (Rio Grande do Sul); Sindilat, R.S. Relatório Sócioeconômico Da Cadeia Produtiva Do Leite No Rio Grande Do Sul; Emater/RS-Ascar: Porto Alegre, Brazil, 2021. [Google Scholar]
- Gejl, R.N.; Bjerg, P.L.; Henriksen, H.J.; Hauschild, M.Z.; Rasmussen, J.; Rygaard, M. Integrating Groundwater Stress in Life-Cycle Assessments—An Evaluation of Water Abstraction. J. Environ. Manag. 2018, 222, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Xu, H.; Daystar, J.; Elgowainy, A.; Wang, M. AWARE-US: Quantifying Water Stress Impacts of Energy Systems in the United States. Sci. Total Environ. 2019, 648, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and Classification of Indicators of Green Water Availability and Scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef]
- Northey, S.A.; López, C.M.; Haque, N.; Mudd, G.M.; Yellishetty, M. Production Weighted Water Use Impact Characterisation Factors for the Global Mining Industry. J. Clean. Prod. 2018, 184, 788–797. [Google Scholar] [CrossRef]
- Boulay, A.M.; Lenoir, L.; Manzardo, A. Bridging the Data Gap in the Water Scarcity Footprint by Using Crop-Specific AWARE Factors. Water 2019, 11, 2634. [Google Scholar] [CrossRef]
Technical Water Use | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drinking | 13,404 | 12,898 | 13,329 | 13,154 | 13,321 | 12,993 | 13,203 | 13,136 | 13,254 | 13,216 | 13,201 | 13,373 |
Cleaning | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 | 4760 |
Cooling | 13,099 | 4918 | 1173 | 8653 | 365 | 2446 | 245 | 1946 | 672 | 6433 | 1404 | 12,109 |
Total | 31,263 | 22,576 | 19,263 | 26,567 | 18,446 | 20,199 | 18,209 | 19,842 | 18,686 | 24,409 | 19,365 | 30,242 |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | Mean | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inventory results Water consumption [m3/product] | Poultry [m3/t CW] | Drinking | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 |
Cleaning | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
Cooling | 11.2 | 4.0 | 0.6 | 7.5 | 0.2 | 2.2 | 0.1 | 1.7 | 0.4 | 5.6 | 0.8 | 10.5 | 3.7 | ||
Total | 15.4 | 8.1 | 4.7 | 11.6 | 4.3 | 6.3 | 4.3 | 5.9 | 4.6 | 9.8 | 5.0 | 14.7 | 7.9 | ||
Pig [m3/t CW] | Drinking | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | |
Cleaning | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | ||
Total | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | ||
Milk_PB [m3/t FPCM] | Drinking | 8.4 | 7.5 | 8.3 | 8.0 | 6.7 | 6.2 | 6.5 | 6.4 | 6.6 | 8.1 | 8.1 | 8.4 | 7.4 | |
Cleaning | 1.5 | 1.5 | 1.5 | 1.5 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.5 | 1.5 | 1.5 | 1.4 | ||
Total | 9.9 | 9.0 | 9.8 | 9.5 | 7.9 | 7.4 | 7.7 | 7.6 | 7.8 | 9.6 | 9.6 | 9.9 | 8.8 | ||
Milk_SC [m3/t FPCM] | Drinking | 7.5 | 6.7 | 7.4 | 7.1 | 5.9 | 5.5 | 5.8 | 5.7 | 5.8 | 7.2 | 7.2 | 7.5 | 6.6 | |
Cleaning | 1.2 | 1.2 | 1.2 | 1.2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.2 | 1.2 | 1.2 | 1.1 | ||
Total | 8.7 | 7.9 | 8.6 | 8.3 | 6.9 | 6.4 | 6.7 | 6.6 | 6.8 | 8.4 | 8.4 | 8.7 | 7.7 | ||
Milk_CO [m3/t FPCM] | Drinking | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | |
Cleaning | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | ||
Cooling | 3.9 | 2.8 | 2.8 | 2.3 | 0.9 | 0.3 | 0.5 | 0.4 | 1.0 | 1.3 | 2.7 | 2.8 | 1.8 | ||
Total | 10.5 | 9.4 | 9.4 | 8.8 | 7.5 | 6.9 | 7.1 | 7.0 | 7.6 | 7.9 | 9.2 | 9.4 | 8.4 | ||
Scarcity footprint [m3 world eq./t output] Boulay et al. [17] | SC.1 AWARE | CFAWARE * | 0.61 | 0.69 | 0.79 | 0.57 | 0.32 | 0.25 | 0.20 | 0.21 | 0.19 | 0.19 | 0.31 | 0.51 | 0.4 |
Poultry | 9.4 | 5.6 | 3.7 | 6.7 | 1.4 | 1.6 | 0.9 | 1.2 | 0.9 | 1.8 | 1.5 | 7.5 | 3.5 | ||
Pig | 9.4 | 10.6 | 12.2 | 8.8 | 4.9 | 3.8 | 3.1 | 3.2 | 2.9 | 2.9 | 4.8 | 7.9 | 6.2 | ||
Milk_PB | 6.0 | 6.2 | 7.8 | 5.4 | 2.5 | 1.8 | 1.6 | 1.6 | 1.5 | 1.8 | 3.0 | 5.1 | 3.7 | ||
Milk_SC | 5.3 | 5.4 | 6.8 | 4.8 | 2.2 | 1.6 | 1.4 | 1.4 | 1.3 | 1.6 | 2.6 | 4.4 | 3.2 | ||
Milk_CO | 6.4 | 6.5 | 7.4 | 5.1 | 2.4 | 1.7 | 1.4 | 1.5 | 1.4 | 1.5 | 2.9 | 4.8 | 3.6 | ||
SC.2 AWARE | CFAWARE * | 0.37 | 0.41 | 0.50 | 0.34 | 0.24 | 0.19 | 0.16 | 0.17 | 0.15 | 0.15 | 0.25 | 0.31 | 0.3 | |
Poultry | 5.6 | 3.4 | 2.3 | 4.0 | 1.0 | 1.2 | 0.7 | 1.0 | 0.7 | 1.5 | 1.2 | 4.5 | 2.3 | ||
Pig | 5.7 | 6.4 | 7.6 | 5.3 | 3.7 | 2.9 | 2.5 | 2.6 | 2.3 | 2.4 | 3.8 | 4.8 | 4.2 | ||
Milk_PB | 3.6 | 3.7 | 4.8 | 3.3 | 1.9 | 1.4 | 1.3 | 1.3 | 1.2 | 1.5 | 2.4 | 3.0 | 2.4 | ||
Milk_SC | 3.2 | 3.3 | 4.3 | 2.9 | 1.7 | 1.2 | 1.1 | 1.1 | 1.0 | 1.3 | 2.1 | 2.7 | 2.1 | ||
Milk_CO | 3.9 | 3.9 | 4.6 | 3.0 | 1.8 | 1.3 | 1.2 | 1.2 | 1.1 | 1.2 | 2.3 | 2.9 | 2.4 | ||
SC.3 AWARE | CFAWARE * | 7.8 | 9.7 | 9.4 | 8.2 | 6.6 | 4.5 | 3.9 | 4.2 | 2.1 | 3.9 | 4.0 | 6.0 | 5.9 | |
Poultry | 119.7 | 78.9 | 44.4 | 95.0 | 28.5 | 28.4 | 16.6 | 24.5 | 9.8 | 37.8 | 19.9 | 88.5 | 49.3 | ||
Pig | 120.0 | 149.6 | 145.1 | 126.0 | 101.9 | 69.4 | 59.7 | 64.6 | 33.1 | 59.5 | 61.9 | 93.0 | 90.3 | ||
Milk_PB | 77.2 | 87.4 | 92.1 | 77.3 | 52.2 | 33.4 | 29.9 | 31.9 | 16.8 | 37.0 | 38.4 | 59.5 | 52.7 | ||
Milk_SC | 67.7 | 76.6 | 80.8 | 67.9 | 45.3 | 29.0 | 26.0 | 27.8 | 14.5 | 32.5 | 33.7 | 52.2 | 46.2 | ||
Milk_CO | 81.7 | 90.9 | 88.3 | 72.2 | 49.6 | 31.0 | 27.5 | 29.2 | 16.3 | 30.3 | 37.1 | 56.6 | 50.9 | ||
SC.4 AWARE | CFAWARE * | 2.8 | 3.0 | 3.7 | 3.2 | 2.3 | 1.5 | 1.3 | 1.3 | 1.0 | 1.2 | 1.6 | 2.1 | 2.1 | |
Poultry | 43.8 | 24.0 | 17.5 | 37.4 | 10.0 | 9.4 | 5.5 | 7.9 | 4.8 | 12.2 | 8.0 | 31.5 | 17.7 | ||
Pig | 43.9 | 45.5 | 57.1 | 49.6 | 35.9 | 23.0 | 19.7 | 20.7 | 16.0 | 19.2 | 24.9 | 33.0 | 32.4 | ||
Milk_PB | 28.2 | 26.6 | 36.2 | 30.4 | 18.4 | 11.0 | 9.9 | 10.3 | 8.1 | 11.9 | 15.4 | 21.1 | 19.0 | ||
Milk_SC | 24.8 | 23.3 | 31.8 | 26.7 | 16.0 | 9.6 | 8.6 | 8.9 | 7.0 | 10.5 | 13.5 | 18.6 | 16.6 | ||
Milk_CO | 29.9 | 27.7 | 34.7 | 28.4 | 17.5 | 10.3 | 9.1 | 9.4 | 7.9 | 9.8 | 14.9 | 20.1 | 18.3 | ||
SC.5 AWARE | CFAWARE * | 8.1 | 9.8 | 7.6 | 8.1 | 6.8 | 4.2 | 2.2 | 2.3 | 2.2 | 2.0 | 3.8 | 7.1 | 5.4 | |
Poultry | 124.9 | 79.9 | 36.1 | 94.6 | 29.2 | 26.8 | 9.2 | 13.7 | 10.0 | 19.3 | 18.9 | 104.7 | 47.3 | ||
Pig | 125.2 | 151.5 | 117.7 | 125.5 | 104.3 | 65.5 | 33.3 | 36.1 | 33.8 | 30.5 | 58.8 | 110.0 | 82.7 | ||
Milk_PB | 80.5 | 88.5 | 74.7 | 77.0 | 53.4 | 31.5 | 16.7 | 17.8 | 17.1 | 18.9 | 36.5 | 70.4 | 48.6 | ||
Milk_SC | 70.7 | 77.6 | 65.6 | 67.6 | 46.4 | 27.4 | 14.5 | 15.5 | 14.8 | 16.6 | 32.0 | 61.8 | 42.5 | ||
Milk_CO | 85.2 | 92.1 | 71.6 | 71.9 | 50.8 | 29.3 | 15.3 | 16.3 | 16.6 | 15.5 | 35.3 | 67.0 | 47.2 | ||
Scarcity factor BWSI Hoekstra et al. [18] | BWSI Binary (0 or 1) ** | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
BWSI (%) | SC.1 | 2.7 | 2.2 | 2.2 | 2.1 | 1.1 | 0.9 | 0.7 | 0.8 | 0.7 | 0.8 | 1.1 | 2.2 | 1.4 | |
SC.2 | 0.6 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.3 | 0.5 | 0.3 | ||
SC.3 | 11.1 | 10.2 | 8.7 | 10.1 | 6.0 | 4.5 | 3.6 | 4.2 | 2.1 | 4.7 | 3.9 | 8.5 | 6.5 | ||
SC.4 | 4.4 | 3.3 | 3.6 | 4.2 | 2.2 | 1.5 | 1.2 | 1.4 | 1.0 | 1.6 | 1.6 | 3.2 | 2.4 | ||
SC.5 | 11.5 | 10.3 | 7.2 | 10.0 | 6.2 | 4.3 | 2.0 | 2.4 | 2.1 | 2.4 | 3.7 | 10.0 | 6.0 | ||
Contribution of livestock production to water scarcity | 96% | 95% | 93% | 95% | 93% | 94% | 93% | 93% | 93% | 95% | 93% | 96% | 94% | ||
Contribution (%) of each livestock production to water scarcity * | Poultry | 54% | 40% | 27% | 48% | 26% | 35% | 26% | 33% | 27% | 44% | 28% | 53% | 37% | |
Pig | 22% | 31% | 36% | 26% | 37% | 34% | 38% | 35% | 37% | 28% | 36% | 23% | 32% | ||
Milk_PB | 14% | 18% | 23% | 16% | 24% | 20% | 23% | 21% | 23% | 18% | 22% | 15% | 20% | ||
Milk_SC | 3% | 4% | 5% | 4% | 6% | 5% | 6% | 5% | 6% | 4% | 5% | 4% | 5% | ||
Milk_CO | 7% | 8% | 9% | 6% | 8% | 6% | 7% | 6% | 8% | 6% | 9% | 6% | 7% |
local CFAWARE (SC.1) [m3 World eq/m3 Water Used] | CF Non-Agri Taquari-Antas Basin [m3 World eq/m3 Water Used] | Difference between the WSF (%) | |
---|---|---|---|
Poultry | 3.5 | 5.5 | 36.3 |
Pig | 6.2 | 10.8 | 42.3 |
Milk_PB system | 3.7 | 6.2 | 40.1 |
Milk_SC system | 3.2 | 5.4 | 40.0 |
Milk_CO system | 3.6 | 5.9 | 39.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carra, S.H.Z.; Drastig, K.; Palhares, J.C.P.; Bortolin, T.A.; Koch, H.; Schneider, V.E. Impact Assessment of Livestock Production on Water Scarcity in a Watershed in Southern Brazil. Water 2023, 15, 3955. https://doi.org/10.3390/w15223955
Carra SHZ, Drastig K, Palhares JCP, Bortolin TA, Koch H, Schneider VE. Impact Assessment of Livestock Production on Water Scarcity in a Watershed in Southern Brazil. Water. 2023; 15(22):3955. https://doi.org/10.3390/w15223955
Chicago/Turabian StyleCarra, Sofia Helena Zanella, Katrin Drastig, Julio Cesar Pascale Palhares, Taison Anderson Bortolin, Hagen Koch, and Vania Elisabete Schneider. 2023. "Impact Assessment of Livestock Production on Water Scarcity in a Watershed in Southern Brazil" Water 15, no. 22: 3955. https://doi.org/10.3390/w15223955
APA StyleCarra, S. H. Z., Drastig, K., Palhares, J. C. P., Bortolin, T. A., Koch, H., & Schneider, V. E. (2023). Impact Assessment of Livestock Production on Water Scarcity in a Watershed in Southern Brazil. Water, 15(22), 3955. https://doi.org/10.3390/w15223955