The Dynamics of Floating Macroalgae in the East China Sea and Its Vicinity Waters: A Comparison between 2017 and 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Random Forest Model
2.4. Performance Metrics
3. Algorithm Development
3.1. Analysis of Spectral Differences in Ulva prolifera and Sargassum Based on Sentinel-2
3.2. Separation of Algae and Seawater
3.3. Differentiation of Ulva prolifera and Sargassum by the SUI-I Index
3.4. Distinguishing Ulva prolifera and Sargassum Based on the Random Forest Algorithm
4. Algorithm Evaluation and Application
4.1. Accuracy Evaluation
4.2. The Algorithm Is Applied to GF-1 WFV Data
4.3. Comparative Analysis of the Temporal and Spatial Distribution of East China Sea Algae and Its Vicinity Waters in 2017 and 2023
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, F.Z.; Jiang, P.; Wei, C.J.; Zhang, Q.C.; Li, J.Y.; Liu, Y.T.; Yu, R.C.; Yan, T.; Zhou, M.J. Co-occurence of green tide,golden tide and red tides along the 35° N transect in the Yellow sea during spring and summer in 2017. J. Oceanol. Limnol. 2018, 49, 1021–1030. [Google Scholar]
- Yu, R.C.; Liu, D.Y. Harmful Algal Blooms in the Coastal Waters of China: Current Situation, Long-term Changes and Prevention Strategies. Bull. Chin. Acad. Sci. 2016, 31, 1167–1174. [Google Scholar] [CrossRef]
- Xing, Q.G.; Hu, C.M. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Smetacek, V.; Zingone, A. Green and golden seaweed tides on the rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wan, J.H.; Zhang, J.; Ma, Y.J.; Wang, L.; Zhao, J.H.; Wang, Z.Z. Spatial-temporal distribution of golden tide based on high-resolution satellite remote sensing in the South Yellow Sea. J. Coastal. Res. 2019, 90, 221–227. [Google Scholar] [CrossRef]
- Liu, J.L.; Xia, J.; Zhuang, M.M.; Zhang, J.H.; Sun, Y.Q.; Tong, Y.C.; Zhao, S.; He, P.M. Golden seaweed tides accumulated in Pyropia aquaculture areas are becoming a normal phenomenon in the Yellow Sea of China. Sci. Total Environ. 2021, 774, 145726. [Google Scholar] [CrossRef]
- Hu, C.M.; Li, D.Q.; Chen, C.S.; Ge, J.Z.; Muller-Karger, F.E.; Liu, J.P.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Oceans. 2010, 115, C5. [Google Scholar] [CrossRef]
- Liu, D.Y.; Keesing, J.K.; Xing, Q.G.; Shi, P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut Bull. 2009, 58, 888–895. [Google Scholar] [CrossRef]
- Xing, Q.G.; Guo, R.H.; Wu, L.L.; An, D.Y.; Cong, M.; Qin, S.; Li, X.R. High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea. IEEE. Geosci. Remote Sens. Lett. 2017, 14, 1815–1819. [Google Scholar] [CrossRef]
- Wang, M.Q.; Hu, C.M. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Zhang, J.; Cui, T.W.; Gong, J.L.; Liu, R.J.; Chen, X.Y.; Liang, X.J. Remote sensing estimation of the biomass of floating Ulva prolifera and analysis of the main factors driving the interannual variability of the biomass in the Yellow Sea. Mar. Pollut Bull. 2019, 140, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M.H. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008. J. Geophys. Res. Oceans. 2009, 114, C12. [Google Scholar] [CrossRef]
- Hu, C.M. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Jin, S.; Han, Z.; Liu, Y. A Remote Sening Method for Discriminating Ulva Prolifra and Sargassum. Remote Sening Inform. 2016, 4, 4–48. [Google Scholar]
- Sun, D.Y.; Chen, Y.; Wang, S.Q.; Zhang, H.L.; Qiu, Z.F.; Mao, Z.H.; He, Y.J. Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102302. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Liu, R.J.; Kim, K.Y.; Zhang, J.; Cui, T.W. A random forest-based algorithm to distinguish Ulva prolifera and Sargassum from multispectral satellite images. IEEE Trans. Geosci. Electron. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Liang, X.J.; Qin, P.; Xiao, Y.F.; Kim, K.Y.; Liu, R.J.; Chen, X.Y.; Wang, Q.B. Automatic remote sensing detection of floating macroalgae in the yellow and east china seas using extreme learning machine. J. Coastal Res. 2019, 90, 272–281. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.M.; Wang, M.Q.; Shang, S.L.; Wilson, C. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 2017, 44, 11,501–11,509. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.M.; Xing, Q.G.; Shang, S.L. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 2016, 58, 35–44. [Google Scholar] [CrossRef]
- Liu, D.Y.; Keesing, J.K.; He, P.M.; Wang, Z.L.; Shi, Y.J.; Wang, Y.J. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuarine. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Hu, C.M.; Barnes, B.B.; Murch, B.; Carlson, P.R. Satellite-based virtual buoy system to monitor coastal water quality. Opt. Eng. 2014, 53, 051402. [Google Scholar] [CrossRef]
- Revel, C.; Lonjou, V.; Marcq, S.; Desjardins, C.; Fougnie, B.; Coppolani-Delle Luche, C.; Guilleminot, N.; Lacamp, A.; Lourme, E.; Miquel, C. Sentinel-2A and 2B absolute calibration monitoring. Eur. J. Remote Sens. 2019, 52, 122–137. [Google Scholar] [CrossRef]
- Fletcher, K. SENTINEL 2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ding, X.W.; Zhuang, M.M.; Wang, S.Y.; Chen, L.; Shen, H.; He, P.M. An increase in new Sargassum (Phaeophyceae) blooms along the coast of the East China Sea and Yellow Sea. Phycologia 2019, 58, 374–381. [Google Scholar] [CrossRef]
- Hu, C.M.; Feng, L.; Hardy, R.F.; Hochberg, E.J. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sens. Environ. 2015, 167, 229–246. [Google Scholar] [CrossRef]
Date | Data |
---|---|
23 May 2017 | S2A_MSIL1C_20170523T021611_N0205_R003_T51SXT_20170523T022351data |
26 May 2017 | S2A_MSIL1C_20170526T022551_N0205_R046_T51SWR_20170526T023526 |
3 June 2019 | S2B_MSIL1C_20190603T023559_N0207_R089_T51SUU_20190603T061117 |
18 June 2019 | S2A_MSIL1C_20190618T023551_N0207_R089_T51STU_20190618T042557 |
28 May 2020 | S2B_MSIL1C_20200528T023549_N0209_R089_T51SUU_20200528T054012 |
Sentinel-2 MSI | GF-1 WFV | |
---|---|---|
Central Wavelength | Band1:490 nm | Band1:484 nm |
Band2:560 nm | Band2:560 nm | |
Band3:665 nm | Band3:665 nm | |
Band4:842 nm | Band4:800 nm | |
Spital resolution | 10 m | 16 m |
Swath | 290 km | 200 km |
Revisit time | 5 days | 4 days |
Positive Example-Predicted Value | Counterexample-Predicted Value | |
---|---|---|
Positive example-Actual value | TP | FN |
Negative example-Actual value | FP | TN |
Abbreviation | Description | Formula |
---|---|---|
Blue-Green | Differences between the blue light spectrum and the green light spectrum. | |
DVI | Difference Vegetation Index | |
SUI-I | Ulva prolifera and Sargassum Index |
SUI-I-Ulva | SUI-I-Sargassum | |
---|---|---|
Ulva-labeled | 10872 | 257 |
Sargassum-labeled | 304 | 9814 |
Precision | 97.3% | 97.4% |
Recall | 97.7% | 97.0% |
F1 | 97.5% | 97.2% |
RF-Ulva | RF-Ulva | SUI-I-Sargassum | |
---|---|---|---|
Ulva-labeled | 1,424,694 | 12 | 16 |
Sargassum-labeled | 113 | 10,963 | 53 |
Precision | 90 | 18 | 10,010 |
Recall | 99.7% | 99.3% | |
F1 | 98.5% | 98.9% |
Date | 24 January 2017 | 13 February 2017 | 15 March 2017 * | 12 April 2017 | 27 May 2017 |
---|---|---|---|---|---|
Area Km2 | 0.7 | 8.7 | 1.5 | 70 | 84 |
Date | 20 February 2023 | 21 March 2023 * | 10 April 2023 | 27 April 2023 | 13 May 2023 |
---|---|---|---|---|---|
Area Km2 | 0.1 | 6.0 | 90.5 | 55.4 | 20.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Li, J.; Xing, Q.; An, D.; Li, J. The Dynamics of Floating Macroalgae in the East China Sea and Its Vicinity Waters: A Comparison between 2017 and 2023. Water 2023, 15, 3797. https://doi.org/10.3390/w15213797
Yu D, Li J, Xing Q, An D, Li J. The Dynamics of Floating Macroalgae in the East China Sea and Its Vicinity Waters: A Comparison between 2017 and 2023. Water. 2023; 15(21):3797. https://doi.org/10.3390/w15213797
Chicago/Turabian StyleYu, Dingfeng, Jinming Li, Qianguo Xing, Deyu An, and Jinghu Li. 2023. "The Dynamics of Floating Macroalgae in the East China Sea and Its Vicinity Waters: A Comparison between 2017 and 2023" Water 15, no. 21: 3797. https://doi.org/10.3390/w15213797