Impact of Lockdown on the Surface Water Quality in Kelani River, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Water Quality Analysis
2.3. Statistical Analysis
2.4. Water Quality Index (WQI)
2.5. GIS Thematic Mapping
3. Results
3.1. Spatio-Temporal Variations of Water Quality in Kelani River Sri Lanka
3.1.1. Water Quality of Key Parameters
3.1.2. Water Quality Index (WQI)
3.1.3. Hydro-Chemical Type
3.1.4. Sodium Adsorption Ratio (SAR) Analysis
3.2. Impacts of Lockdown on Water Quality
3.2.1. Water Quality Changes in the Kelani River in Pre-Lockdown, Lockdown, Post-Lockdown Seasons
3.2.2. Statistical Analysis
3.3. Changes in Halides and Nitrate
3.3.1. Cl−/Br− Ratio in the Kelani River Basin in Lockdown and Post-Lockdown Seasons
3.3.2. Nitrate and the Ratio of Cl−/NO3−
4. Discussion
4.1. Water Quality Changing Patterns in the Downstream of the Kelani River
4.1.1. Poor Water Quality in the Downstream of the Kelani River
4.1.2. Water Quality Changing Patterns in the Middle Stream and the Upstream of the Kelani River
4.2. Possible Reason for Water Quality Improvements during Lockdown Season
Less Human Activities
4.3. Policy Suggestions to Alleviate Water Pollution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef] [PubMed]
- Mahagamage, Y.; Mahagamage, M.G.Y.L.; Manage, P.M. Water Quality Index (CCME-WQI) Based Assessment Study of Water Quality in Kelani River Basin, Sri Lanka. 2014. Available online: https://www.researchgate.net/publication/281223991 (accessed on 2 November 2022).
- Mahagamage, M.; Chinthaka, S.; Manage, P.M. Assessment of water quality index for groundwater in the kelani river basin, sri Lanka. Int. J. Agric. Environ. Res. 2016, 2, 1158–1171. [Google Scholar]
- Qadir, A.; Malik, R.N.; Husain, S.Z. Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environ. Monit. Assess. 2008, 140, 43–59. [Google Scholar] [CrossRef]
- Mahagamage, M.G.Y.L.; Pathirage, M.V.S.C.; Manage, P.M. Contamination Status of Salmonella spp., Shigella spp. Water 2020, 12, 2178. [Google Scholar] [CrossRef]
- Kottagoda, S.D.; Abeysingha, N.S. Morphometric analysis of watersheds in kelani river basin for soil and water conservation. J. Natl. Sci. Found. Sri Lanka 2017, 45, 273–285. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF): Washington, DC, USA, 2012; p. 1496. [Google Scholar]
- Indika, S.; Wei, Y.; Hu, D.; Ketharani, J.; Ritigala, T.; Cooray, T.; Hansima, M.A.C.K.; Makehelwala, M.; Jinadasa, K.B.S.N.; Weragoda, S.K.; et al. Evaluation of performance of existing RO drinking water stations in the north central province, Sri Lanka. Membranes 2021, 11, 383. [Google Scholar] [CrossRef]
- Prasad, B.; Sangita, K. Heavy metal pollution index of ground water of an abandoned open cast mine filled with fly Ash: A case study. Mine Water Environ. 2008, 27, 265–267. [Google Scholar] [CrossRef]
- Prasad, B.; Kumari, P.; Bano, S.; Kumari, S. Ground water quality evaluation near mining area and development of heavy metal pollution index. Appl. Water Sci. 2014, 4, 11–17. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Singh, P.K.; Singh, A.K.; De Maio, M. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique. Bull. Environ. Contam. Toxicol. 2016, 96, 508–515. [Google Scholar] [CrossRef]
- Cooray, T.; Wei, Y.; Zhong, H.; Zheng, L.; Weragoda, S.K.; Weerasooriya, R. Assessment of groundwater quality in CKDu Affected areas of Sri Lanka: Implications for drinking water treatment. Int. J. Environ. Res. Public. Health 2019, 16, 1698. [Google Scholar] [CrossRef] [PubMed]
- SLS 614:2013; Sri Lanka Standard Specification for Potable Water. Sri Lanka Standards Institution: Colombo, Sri Lanka, 2013. [CrossRef]
- Sulochanan, B.; Muniyandi, K. Hydrographic parameters off Gulf of Mannar and Palk Bay during an year of abnormal rainfall. J. Mar. Biol. Assoc. India 2005, 47, 198–200. [Google Scholar]
- Olbert, M.G.; Uddin, A.; Nash, S. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107–218. [Google Scholar] [CrossRef]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622–623, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Alavi, N.; Zaree, E.; Hassani, M.; Babaei, A.A.; Goudarzi, G.; Yari, A.R.; Mohammadi, M.J. Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalin. Water Treat. 2016, 57, 23686–23697. [Google Scholar] [CrossRef]
- Bishwakarma, K.; Pant, R.R.; Pal, K.B.; Ghimire, A.; Thapa, L.B.; Saud, P.; Joshi, S.; Panthi, K.P. Water quality and land use/cover changes in the Phewa Watershed, Gandaki Province, Nepal. Nepal J. Environ. Sci. 2019, 7, 31–39. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, X.; Xu, T.; Zhang, H.; Sheng, D.; Yin, D. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources. Shanghai, China. Sci. Total Environ. 2013, 458–460, 267–272. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Nishiyama, E.; Higashi, K.; Mori, H.; Suda, K.; Nakamura, H.; Omori, S.; Maruyama, S.; Hongoh, Y.; Kurokawa, K. The relationship between microbial community structures and environmental parameters revealed by metagenomic analysis of hot spring water in the kirishima area, Japan. Front. Bioeng. Biotechnol. 2018, 6, 202. [Google Scholar] [CrossRef] [PubMed]
- Lira, F.; Vaz-Moreira, I.; Tamames, J.; Manaia, C.M.; Martínez, J.L. Metagenomic analysis of an urban resistome before and after wastewater treatment. Sci. Rep. 2020, 10, 8174. [Google Scholar] [CrossRef]
- Gu, Y.G.; Gao, Y.P. Bioaccessibilities and health implications of heavy metals in exposed-lawn soils from 28 urban parks in the megacity Guangzhou inferred from an in vitro physiologically-based extraction test. Ecotoxicol. Environ. Saf. 2018, 148, 747–753. [Google Scholar] [CrossRef]
- Kumar, S.; Islam, A.R.M.T.; Hasanuzzaman; Salam, R.; Islam, S.; Khan, R.; Rahman, M.S.; Pal, S.C.; Ali, M.M.; Idris, A.M.; et al. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environ. Sci. Pollut. Res. 2022, 29, 42742–42767. [Google Scholar] [CrossRef] [PubMed]
- Nissenbaum, A.; Magaritz, M. Bromine-rich groundwater in the Hula Valley, Israel. Naturwissenschaften 1991, 78, 217–218. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Panno, S.; Hackley, K.; Hwang, H.; Greenberg, S.; Krapac, I.; Landsberger, S.; O’Kelly, D. Characterization and identification of Na-Cl sources in ground water. Ground Water 2006, 44, 176–187. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 2008, 359, 189–207. [Google Scholar] [CrossRef]
- Vengosh, A.; Pankratov, I. Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water 1998, 36, 815–824. [Google Scholar] [CrossRef]
- Richter, B.C.; Kreitler, C.W. Geochemistry of Salt Water Beneath the Rolling Plains, North-Central Texas. Groundwater 1986, 24, 735–742. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; Van Gent, J.; Eskes, H.; Levelt, P.F.; Van Der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Kato, T.; Li, Z.-P.; Li, F.-Y. Environmental Problems From Tea Cultivation in Japan and a Control Measure Using Calcium Cyanamide. Pedosphere 2006, 16, 770–777. [Google Scholar] [CrossRef]
- Kim, K.H.; Yun, S.T.; Kim, H.K.; Kim, J.W. Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor. 2015, 148, 196–205. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Wu, J.; Srinivasamoorthy, K. Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin. South India. Hum. Ecol. Risk Assess. 2019, 25, 250–270. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section. China Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Viadero, R.C.; Buzby, K.M. Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environ. Eng. Sci. 2005, 22, 745–755. [Google Scholar] [CrossRef]
- Zhao, H.; Xiao, Q.; Miao, Y.; Wang, Z.; Wang, Q. Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water. Guilin, Southwest China. Environ. Sci. Pollut. Res. 2020, 27, 21299–21310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapabandara, I.; Wei, Y.; Ranathunga, B.; Indika, S.; Jinadasa, K.B.S.N.; Weragoda, S.K.; Weerasooriya, R.; Makehelwala, M. Impact of Lockdown on the Surface Water Quality in Kelani River, Sri Lanka. Water 2023, 15, 3785. https://doi.org/10.3390/w15213785
Yapabandara I, Wei Y, Ranathunga B, Indika S, Jinadasa KBSN, Weragoda SK, Weerasooriya R, Makehelwala M. Impact of Lockdown on the Surface Water Quality in Kelani River, Sri Lanka. Water. 2023; 15(21):3785. https://doi.org/10.3390/w15213785
Chicago/Turabian StyleYapabandara, Isuru, Yuansong Wei, Bimsara Ranathunga, Suresh Indika, K. B. S. N. Jinadasa, Sujithra K. Weragoda, Rohan Weerasooriya, and Madhubashini Makehelwala. 2023. "Impact of Lockdown on the Surface Water Quality in Kelani River, Sri Lanka" Water 15, no. 21: 3785. https://doi.org/10.3390/w15213785