Impact of Water Management on Methane Emission Dynamics in Sri Lankan Paddy Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Measurements and Calculations
2.3. Statistical Analysis and Data Visualization
3. Results and Discussion
3.1. Weather Data and Water Usage
3.2. CH4 Gas Emission
3.2.1. Seasonal Dynamics of CH4
3.2.2. Diell Variation of CH4 fluxes under Submerged Conditions
3.3. Rice Productivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nabuurs, G.-J.; Mrabet, R.; Hatab, A.A.; Bustamante, M.; Clark, H.; Havlík, P.; House, J.; Mbow, C.; Ninan, K.N.; Popp, A.; et al. Agriculture, Forestry and Other Land Uses (AFOLU). In Climate Change 2022—Mitigation of Climate Change; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 747–860. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- United Nations (UN). Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); UN: Geneva, Switzerland, 2015; Volume 4, p. 2017. [Google Scholar]
- Bandumula, N. Rice Production in Asia: Key to Global Food Security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Gleick, P. (Ed.) Water in Crisis: A Guide to the World’s Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Lampayan, R.; Palis, F.; Flor, R.J.; Bouman, B.; Quicho, E.; De Dios, J.L.; Espiritu, A.; Sibayan, E.; Vicmudo, V.R.; Lactaoen, A.T.; et al. Adoption and dissemination of “safe alternate wetting and drying” in pump irrigated areas in the Philippines. In Proceedings of the 60th International Executive Council Meeting of the International Commission on Irrigation and Drainage (ICID), 5th Regional Conference, New Delhi, India, 6–12 December 2009. [Google Scholar]
- Qiu, J. China cuts methane emissions from rice fields. Nat. News 2009. [Google Scholar] [CrossRef]
- Yan, X.; Ohara, T.; Akimoto, H. Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Glob. Chang. Biol. 2003, 9, 237–254. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; Da Rosa, E.F.F.; Van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Siopongco, J.; Wassmann, R.; Sander, B. Alternate Wetting and Drying in Philippine Rice Production: Feasibility Study for a Clean Development Mechanism; International Rice Research Institute: Metro Manila, Philippines, 2013.
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Wu, L.; Tang, S.; Hu, R.; Wang, J.; Duan, P.; Xu, C.; Zhang, W.; Xu, M. Increased N2O emission due to paddy soil drainage is regulated by carbon and nitrogen availability. Geoderma 2023, 432, 116422. [Google Scholar] [CrossRef]
- Toma, Y.; Takechi, Y.; Inoue, A.; Nakaya, N.; Hosoya, K.; Yamashita, Y.; Adachi, M.; Kono, T.; Hideto, U. Early mid-season drainage can mitigate greenhouse gas emission from organic rice farming with green manure application. Soil Sci. Plant Nutr. 2021, 67, 482–492. [Google Scholar] [CrossRef]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; Van Kessel, C.; Van Groenigen, K.J. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Feng, J.; Chen, C.; Zhang, Y.; Song, Z.; Deng, A.; Zheng, C.; Zhang, W. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agric. Ecosyst. Environ. 2013, 164, 220–228. [Google Scholar] [CrossRef]
- Minamikawa, K.; Tokida, T.; Sudo, S.; Padre, A.; Yagi, K. Guidelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method; National Institute for Agro-Environmental Sciences: Tsukuba, Japan, 2015.
- Marambe, B. Weedy rice—Evolution, threats, and management. Trop. Agric. 2009, 157, 43–64. [Google Scholar]
- Liyanage, G.L.V.M.; Pathirana, S.P.G.S.; Rankoth, L.M.; Wickramasinghe, H.K.J.P. Evaluation of growth, yield and nutritional characterisitics of selected rice (Oryza sativa L.) varieties under organic farming conditions. In Proceedings of the 15th Agricultural Research Symposium, Kuliyapitiya, Sri Lanka, 28–29 June 2016. [Google Scholar]
- Sinthuja, R.; Prasantha, B.D.R.; Hettiarachchi, A. Comparative study of grain quality characteristics of some selected traditional and improved rice varieties in Sri Lanka: A review. Sri Lanka J. Food Agric. 2021, 7, 13–30. [Google Scholar] [CrossRef]
- Prinn, R.G.; Pszenny, A.A.P. (Eds.) International Global Atmospheric Chemistry (IGAC) Project: The Operational Plan. In International Geosphere-Biosphere Programme: A Study of Global Change (IGBP) of the International Council of Scientific Unions; IGBP: Stockholm, Sweden, 1994. [Google Scholar]
- Wijesinghe, R.; Pushpakumari, P. AgStat: Pocket Book of Agricultural Statistics; Socio Economics and Planning Centre, Department of Agriculture: Peradeniya, Sri Lanka, 2008.
- Minamikawa, K.; Yagi, K.; Tokida, T.; Sander, B.O.; Wassmann, R. Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh. Gas Meas. Manag. 2012, 2, 118–128. [Google Scholar] [CrossRef]
- Cai, Z.; Xing, G.; Yan, X.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application: Effects of agricultural management on China. Glob. Biogeochem. Cycles 2005, 19, 2004GB002401. [Google Scholar] [CrossRef]
- Venterea, R.T. Simplified Method for Quantifying Theoretical Underestimation of Chamber-Based Trace Gas Fluxes. J. Environ. Qual. 2010, 39, 126–135. [Google Scholar] [CrossRef]
- Ly, P.; Jensen, L.S.; Bruun, T.B.; De Neergaard, A. Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutr. Cycl. Agroecosyst. 2013, 97, 13–27. [Google Scholar] [CrossRef]
- Mao, Z. Environmental impact of water-saving irrigation for rice. In Irrigation Scheduling: From Theory to Practice, Proceedings of the ICID/FAO Workshop on Irrigation Scheduling, Rome, Italy, 12–13 September 1995; FAO: Rome, Italy, 1996. [Google Scholar]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Gon, H.A.C.; Neue, H.U.; Lantin, R.S.; Wassmann, R.; Alberto, M.C.; Aduna, J.B.; Tan, M.J.P. Controlling factors of methane emission from rice fields. In World Inventory of Soil Emission Potentials; Batjes, N.H., Bridges, E.M., Eds.; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1992; pp. 81–92. [Google Scholar]
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; De Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, R.; Baruah, K.K.; Hazarika, S.; Karmakar, S.; Bordoloi, N. Greenhouse gas emission from rice fields: A review from Indian context. Environ. Sci. Pollut. Res. 2021, 28, 30551–30572. [Google Scholar] [CrossRef]
- Wassmann, R.; Aulakh, M.S. The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils 2000, 31, 20–29. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Yagi, K.; Minami, K. Effects of organic matter application on methane emission from Japanese paddy fields. In Soil and the Greenhouse Effects; Bouwman, A.F., Ed.; John Wiley: Hoboken, NJ, USA, 1990; pp. 467–473. [Google Scholar]
- Wang, C.; Lai, D.Y.F.; Sardans, J.; Wang, W.; Zeng, C.; Peñuelas, J. Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications. PLoS ONE 2017, 12, e0169254. [Google Scholar] [CrossRef] [PubMed]
- Inubushi, K.; Muramatsu, Y.; Umerayasi, M. Influence of Percolation on Methane Emission from Flooded Paddy Soil. Jpn. J. Soil Sci. Plant Nutr. 1992, 63, 184–189. [Google Scholar] [CrossRef]
- Corton, T.M.; Bajita, J.B.; Grospe, F.S.; Pamplona, R.R.; Assis, C.A.; Wassmann, R.; Lantin, R.S.; Buendia, L.V. Methane Emission from Irrigated and Intensively Managed Rice Fields in Central Luzon (Philippines). Nutr. Cycl. Agroecosyst. 2000, 58, 37–53. [Google Scholar] [CrossRef]
- Wassmann, R.; Lantin, R.; Neue, H.-U.; Buendia, L.; Corton, T.M.; Lu, Y. Characterization of Methane Emissions from Rice Fields in Asia. III. Mitigation Options and Future Research Needs. Nutr. Cycl. Agroecosyst. 2000, 58, 23–36. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xu, Y.C.; Li, Z.; Guo, Y.X.; Wassmann, R.; Neue, H.U.; Lantin, R.S.; Buendia, L.V.; Ding, Y.P.; Wang, Z.Z. A Four-Year Record of Methane Emissions from Irrigated Rice Fields in the Beijing Region of China. Nutr. Cycl. Agroecosyst. 2000, 58, 55–63. [Google Scholar] [CrossRef]
- Woese, C.R.; Magrum, L.J.; Fox, G.E. Archaebacteria. J. Mol. Evol. 1978, 11, 245–252. [Google Scholar] [CrossRef]
- Dannenberg, S.; Conrad, R. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 1999, 45, 53–71. [Google Scholar] [CrossRef]
- Schimel, J. Global change: Rice, microbes and methane. Nature 2000, 403, 375–377. [Google Scholar] [CrossRef]
- Neue, H.U.; Wassmann, R.; Kludze, H.K.; Bujun, W.; Lantin, R.S. Factors and processes controlling methane emissions from rice fields. Nutr. Cycl. Agroecosyst. 1997, 49, 111–117. [Google Scholar] [CrossRef]
- Hou, A.X.; Chen, G.X.; Wang, Z.P.; Van Cleemput, O.; Patrick, W.H. Methane and Nitrous Oxide Emissions from a Rice Field in Relation to Soil Redox and Microbiological Processes. Soil Sci. Soc. Am. J. 2000, 64, 2180–2186. [Google Scholar] [CrossRef]
- Watanabe, A.; Yoshida, M.; Kimura, M. Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw. J. Geophys. Res. 1998, 103, 8237–8242. [Google Scholar] [CrossRef]
- Kludze, H.K.; DeLaune, R.D.; Patrick, W.H. Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Sci. Soc. Am. J. 1993, 57, 386–391. [Google Scholar] [CrossRef]
- Bujun, W. Effects of rice cultivars on diel and seasonal methane emission. Ph.D. Thesis, University of the Philippines, Los Banos, Philippines, 1995; 130p. [Google Scholar]
- Bubier, J.L.; Moore, T.R. An ecological perspective on methane emissions from northern wetlands. Trends Ecol. Evol. 1994, 9, 460–464. [Google Scholar] [CrossRef]
- Christensen, T.R.; Ekberg, A.; Ström, L.; Mastepanov, M.; Panikov, N.; Öquist, M.; Svensson, B.H.; Nykänen, H.; Martikainen, P.J.; Oskarsson, H. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Davamani, V.; Parameswari, E.; Arulmani, S. Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Sci. Total Environ. 2020, 726, 138570. [Google Scholar] [CrossRef]
- Xie, J.F.; Li, Y.E. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils. Chin. J. Agrometeorol. 2002, 23, 47–52. [Google Scholar]
- Conrad, R.; Rothfuss, F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils 1991, 12, 28–32. [Google Scholar] [CrossRef]
- Xunhua, Z.; Mingxing, W.; Yuesi, W.; Renxing, S.; Jing, L.; Heyer, J.; Koegge, M.; Papen, H.; Jisheng, J.; Laotu, L. Mitigation options for methane, nitrous oxide and nitric oxide emissions from agricultural ecosystems. Adv. Atmos. Sci. 2000, 17, 83–92. [Google Scholar] [CrossRef]
- Towprayoon, S.; Smakgahn, K.; Poonkaew, S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 2005, 59, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Tirol-Padre, A.; Tran, D.H.; Hoang, T.N.; Hau, D.V.; Ngan, T.T.; An, L.V.; Minh, N.D.; Wassmann, R.; Sander, B.O. Measuring GHG Emissions from Rice Production in Quang Nam Province (Central Vietnam): Emission Factors for Different Landscapes and Water Management Practices. In Land Use and Climate Change Interactions in Central Vietnam, Water Resources Development and Management; Nauditt, A., Ribbe, L., Eds.; Springer: Singapore, 2017; pp. 103–121. [Google Scholar] [CrossRef]
- Chanton, J.P.; Whiting, G.J.; Blair, N.E.; Lindau, C.W.; Bollich, P.K. Methane emission from rice: Stable isotopes, diurnal variations, and CO 2 exchange. Glob. Biogeochem. Cycles 1997, 11, 15–27. [Google Scholar] [CrossRef]
- Wang, M.-X.; Shangguan, X.-J. CH4 emission from various rice fields in P.R. China. Theor. Appl. Climatol. 1996, 55, 129–138. [Google Scholar] [CrossRef]
- Nouchi, I.; Hosono, T.; Aoki, K.; Minami, K. Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling. Plant Soil 1994, 161, 195–208. [Google Scholar] [CrossRef]
- Goodroad, L.L.; Keeney, D.R. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biol. Biochem. 1984, 16, 39–43. [Google Scholar] [CrossRef]
- Dunfield, P.; Knowles, R.; Dumont, R.; Moore, T. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biol. Biochem. 1993, 25, 321–326. [Google Scholar] [CrossRef]
- Smith, K.A.; Thomson, P.E.; Clayton, H.; Mctaggart, I.P.; Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 1998, 32, 3301–3309. [Google Scholar] [CrossRef]
- Wassmann, R.; Neue, H.U.; Lantin, R.S.; Javellana, M.J.; Diego, R.; Hoffmann, H.; Papen, H.; Rennenberg, H. Methane emissions from rainfed rice fields. In Fragile Lives in Fragile Ecosystems: Proceedings of the International Rice Research Conference; International Rice Research Institute: Los Baños, Philippines, 1995; pp. 217–225. [Google Scholar]
- Zhang, H.; Zhang, S.; Yang, J.; Zhang, J.; Wang, Z. Postanthesis Moderate Wetting Drying Improves Both Quality and Quantity of Rice Yield. Agron. J. 2008, 100, 726–734. [Google Scholar] [CrossRef]
- Minamikawa, K.; Sakai, N. The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan. Agric. Ecosyst. Environ. 2006, 116, 181–188. [Google Scholar] [CrossRef]
- Bodelier, P.L.E.; Roslev, P.; Henckel, T.; Frenzel, P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 2000, 403, 421–424. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, G.; Ma, J.; Zhang, G.-B.; Xu, H. Effects of Urea and Controlled Release Urea Fertilizers on Methane Emission from Paddy Fields: A Multi-Year Field Study. Pedosphere 2014, 24, 662–673. [Google Scholar] [CrossRef]
Property | |
---|---|
Texture | Loamy sand |
Clay (%) | 9.75 |
Sand (%) | 85.00 |
Silt (%) | 5.25 |
Total carbon (g/cm3) | 2.53 |
Total nitrogen (g/cm3) | 0.28 |
C:N ratio | 9.04 |
Organic matter content (%) | 2.66 |
Particle density (g cm−3) | 2.58 |
Bulk density (g cm−3) | 1.22 |
Dry density (g cm−3) | 1.18 |
Total porosity (cm3 cm−3) | 0.54 |
Soil gas diffusion coefficient at dry condition (cm2 s−1) | 0.142 |
Practice | |
---|---|
Cropping period | 9 June–28 September 2022 |
Crop duration | 119 days |
Ploughing | −14 DAT |
Transplanting | 0 DAT (22 June 2022) |
Pesticide application ((Carbosulfan 200 g/SC L—640 mL/ha) | 54 DAT |
Pesticide application (Chlorantraniliprole 100 g/ha) | 58 DAT and 68 DAT |
1st fertilization (TSP 35 kg/ha) | 0 DAT |
2nd fertilization (Urea 30 kg/ha) | 13 DAT |
3rd fertilization (Urea 75 kg/ha + MOP 75 kg/ha) | 47 DAT |
1st AWD cycle | 13–23 DAT |
2nd AWD cycle | 23–47 DAT |
Harvesting | 98 DAT |
Treatment | CF/P | AWD/P | CF/NP | AWD/NP |
---|---|---|---|---|
Seasonal CH4 emission (kg/ha) | 517.0 A * | 349.6 AB * | 57.0 B * | 36.1 B * |
Yield (Mg/ha) | 3.7 ** | 3.8 ** | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshani, M.M.T.; Deepagoda, T.K.K.C.; Li, Y.; Hansen, H.F.E.; Elberling, B.; Nissanka, S.P.; Senanayake, D.M.J.B.; Hamamoto, S.; Babu, G.L.S.; Chanakya, H.N.; et al. Impact of Water Management on Methane Emission Dynamics in Sri Lankan Paddy Ecosystems. Water 2023, 15, 3715. https://doi.org/10.3390/w15213715
Lakshani MMT, Deepagoda TKKC, Li Y, Hansen HFE, Elberling B, Nissanka SP, Senanayake DMJB, Hamamoto S, Babu GLS, Chanakya HN, et al. Impact of Water Management on Methane Emission Dynamics in Sri Lankan Paddy Ecosystems. Water. 2023; 15(21):3715. https://doi.org/10.3390/w15213715
Chicago/Turabian StyleLakshani, M. M. Tharindi, T. K. K. Chamindu Deepagoda, Yuan Li, H. F. E. Hansen, Bo Elberling, Sarath P. Nissanka, Dassanayake M. J. B. Senanayake, Shoichiro Hamamoto, G. L. Sivakumar Babu, Hoysala N. Chanakya, and et al. 2023. "Impact of Water Management on Methane Emission Dynamics in Sri Lankan Paddy Ecosystems" Water 15, no. 21: 3715. https://doi.org/10.3390/w15213715