Spatial Distribution of Al, Zn, Fe, As, Pb, Mn, Cr, and Cu in Surface Waters of the Urumqi River Basin, China, and Assessment of Risks to Ecosystems and Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection, Analysis and Processing
2.3. Sample Collection and Determination of Metal Element Concentrations
2.4. Assessment Methods
2.4.1. Pollution Assessment
2.4.2. Ecological Assessment Risk
2.4.3. Risk Assessment for Human Health
- (1)
- Non-carcinogenic potential health risk calculation:
- (2)
- Carcinogenic potential health risk calculation:
Factor | Units | Adults | Children |
---|---|---|---|
Average daily intake via the drinking water route for humans (V) [50,51] | L·day−1 | 2.2 | 1 |
Duration of exposure to metal element w (tw) [52] | a | 70 | 35 |
Exposure frequency of metal element w(γ) [45] | days·a−1 | 365 | 365 |
Body weight per capita (m) [52] | kg | 60 | 25 |
Average exposure time (ta) [52] | days | 12,775 for non-carcinogenic metal elements; 25,550 for carcinogenic metal elements | 12,775 for non-carcinogenic metal elements; 25,550 for carcinogenic metal elements |
Area of contact between water and skin (S) [48] | cm2 | 18,000 | 8000 |
Exposure time (te) [52] | h·day−1 | 0.6333 | 0.4167 |
Human life expectancy (T) | 74 | 74 |
3. Results and Analysis
3.1. Characteristics of Metal Element Pollution in the Urumqi River Basin
3.2. Ecological Risk Assessment of Metal Element Pollution in the Urumqi River Basin
3.2.1. Assessment of Metal Element Pollution
3.2.2. Ecological Assessment of Metal Element Pollution
3.3. Human Health Risk Assessment of Metal Elements in the Urumqi River Basin
3.3.1. Risk Analysis
3.3.2. Spatial Distribution of the Risks to Human Health from Metal Elements
3.3.3. Spatial Distribution of the Risks to Human Health from As
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, G.; Li, F.; Chen, D.; He, X.; Xue, L.; Long, A. Assessment of changes in oasis scale and water management in the arid Manas River Basin, north western China. Sci. Total Environ. 2019, 691, 506–515. [Google Scholar] [CrossRef]
- Tan, M.; Zheng, L. Increase in economic efficiency of water use caused by crop structure adjustment in arid areas. J. Environ. Manag. 2019, 230, 386–391. [Google Scholar] [CrossRef]
- Xia, F.; Tang, H.; Yang, D.; Wu, G. Analysis of coordination degree between urban development and water resources potentials in arid oasis city. Acta Ecol. Sin. 2013, 33, 5883–5892. [Google Scholar]
- Paul, D. Research on heavy metal pollution of river Ganga: A review. Ann. Agrar. Sci. 2017, 15, 278–286. [Google Scholar] [CrossRef]
- Filimon, M.N.; Caraba, I.V.; Popescu, R.; Dumitrescu, G.; Verdes, D.; Petculescu Ciochina, L.; Sinitean, A. Potential Ecological and Human Health Risks of Heavy Metals in Soils in Selected Copper Mining Areas-A Case Study: The Bor Area. Int. J. Environ. Res. Public Health 2021, 18, 1516. [Google Scholar] [CrossRef]
- Tang, W.; Shan, B.; Zhang, H.; Mao, Z. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J. Hazard. Mater. 2010, 176, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
- Devic, G.; Sakan, S.; Dordevic, D. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia. Environ. Sci. Pollut. Res. 2016, 23, 282–297. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Chowdhury, R.; Banerjee, K. Concentrations of some heavy metals in commercially important finfish and shellfish of the River Ganga. Environ. Monit. Assess. 2012, 184, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Wang, D.; Li, T.; Li, Y.; Zhang, G.; Wang, C.; Zhang, S. Accumulation and risk assessment of heavy metals in water, sediments, and aquatic organisms in rural rivers in the Taihu Lake region, China. Environ. Sci. Pollut. Res. 2015, 22, 6721–6731. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef]
- El-Degwy, A.A.; Negm, N.A.; El-Tabl, A.S.; Goher, M.E. Assessment of heavy metal pollution in water and its effect on Nile tilapia (Oreochromis niloticus) in Mediterranean Lakes: A case study at Mariout Lake. Appl. Water Sci. 2023, 13, 50. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Sun, Y.; Chen, J. Novel assessment method of heavy metal pollution in surface water: A case study of Yangping River in Lingbao City, China. Environ. Eng. Res. 2017, 22, 31–39. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Q.; Feng, F.; Jia, H. Occurrence and Ecological Risk Assessment of Heavy Metals from Wuliangsuhai Lake, Yellow River Basin, China. Water 2022, 14, 1264. [Google Scholar] [CrossRef]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.-O.; Choi, K.; Ryu, J.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2022, 136, 105512. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Islam, M.S.; Islam, A.R.M.T.; Bhuyan, M.S.; Ahmed, A.S.S.; Rahman, M.Z.; Rahman, M.M. Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh. Mar. Pollut. Bull. 2022, 175, 113274. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Gu, Y.-Y.; Zhang, Z.-M.; Sun, A.-L.; Shi, X.-Z.; Chen, J.; Lu, Y. Contaminant occurrence, mobility and ecological risk assessment of phthalate esters in the sediment-water system of the Hangzhou Bay. Sci. Total Environ. 2021, 770, 144705. [Google Scholar] [CrossRef]
- Ustaoglu, F.; Aydin, H. Health risk assessment of dissolved heavy metals in surface water in a subtropical rivers basin system of Giresun (North-Eastern Turkey). Desalin. Water Treat. 2020, 194, 222–234. [Google Scholar] [CrossRef]
- Mandindi, W.Z.; Nyaba, L.; Mketo, N.; Nomngongo, P.N. Seasonal Variation of Drinking Water Quality and Human Health Risk Assessment: A Case Study in Rural Village of the Eastern Cape, South Africa. Water 2022, 14, 2013. [Google Scholar] [CrossRef]
- Niu, Z.; Chen, Y.; Zhang, H. Eutrophication assessment and management methodology of multiple pollution sources of a landscape lake in North China. Environ. Sci. Pollut. Res. 2021, 20, 3877–3889. [Google Scholar]
- Liu, B.; Dong, D.; Hua, X.; Dong, W.; Li, M. Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediment of Songhua River, Northeast China. Chin. Geogr. Sci. 2021, 31, 223–233. [Google Scholar] [CrossRef]
- Liu, X.; Dadzie, A.A.; Yuan, L.; Xing, S.; Zhou, X.; Xiao, S. Analysis and potential ecological risk assessment of heavy metals in surface sediments of the freshwater ecosystem in Zhenjiang City, China. SN Appl. Sci. 2020, 4, 258. [Google Scholar] [CrossRef]
- Binici, A.P.S. Ecological risk assessment of heavy metals after dredging in Mogan Lake, Turkey Mogan Gölü’nde (Türkiye) sediment tarama ertesi ağır metallerde ekolojik risk değerlendirmesi. Ege J. Fish. Aquat. Sci. 2020, 39, 197–205. [Google Scholar]
- Fu, G.; Zeng, Q.; Zhao, L.; Zhang, Y.; Feng, B.-J.; Wang, R.; Zhang, L.; Wang, Y.; Hou, C.-C. Health Risk Assessment of Drinking Water Quality in Tianjin Based on GIS. Environ. Sci. Technol. 2015, 36, 4553–4560. [Google Scholar]
- Zhang, G.; Zhang, Y. Water environmental health risk assessment in urban drinking water sources in Dongting Lake region. Environ. Chem. 2017, 36, 1812–1820. [Google Scholar]
- Shil, S.; Singh, U.K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol. Indic. 2019, 106, 105455. [Google Scholar] [CrossRef]
- Astuti, R.D.P.; Mallongi, A.; Amiruddin, R.; Hatta, M.; Rauf, A.U. Risk identification of heavy metals in well water surrounds watershed area of Pangkajene, Indonesia. Gac. Sanit. 2021, 35, S33–S37. [Google Scholar] [CrossRef]
- Astatkie, H.; Ambelu, A.; Beyene, E.M. Sources and level of heavy metal contamination in the water of Awetu watershed streams, southwestern Ethiopia. Heliyon 2021, 7, e06385. [Google Scholar] [CrossRef]
- Lu, Q.; Bian, Z.; Tsuchiya, N. Assessment of heavy metal pollution and ecological risk in river water and sediments in a historically metal mined watershed, Northeast Japan. Environ. Monit. Assess. 2021, 193, 814. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Dong, Z.; Yang, B.; Zeng, G.; Liu, Y.; Zhou, Y.; Meng, J.; Wu, S.; Shao, Y.; Yang, J.; et al. Spatial Distribution, Source Identification, and Potential Ecological Risk Assessment of Heavy Metal in Surface Sediments from River-Reservoir System in the Feiyun River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 14944. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, Z.; Zhang, Y.; Zhang, H.; Wu, Z.; Jiang, B.; Liu, Y.; Dong, H. Source and Health Risk Assessment of Heavy Metals in Soil-Ginger System in the Jing River Basin of Shandong Province, North China. Int. J. Environ. Res. Public Health 2021, 18, 6749. [Google Scholar] [CrossRef]
- Shu, W.; Wang, P.; Zhao, J.; Yu, X.; Xu, Q. Characteristics, Sources and Risk Assessment of Heavy Metals in the Ganjiang River Basin, China. Pol. J. Environ. Stud. 2020, 29, 1849–1868. [Google Scholar] [CrossRef]
- Yang, T.; Chen, J.; Li, X.; Wu, T.; Hu, Z.; Wang, S. Ecological risk by heavy metal contents in sediments within the Wei River Basin, China. Environ. Earth Sci. 2019, 78, 101. [Google Scholar] [CrossRef]
- Zhang, J.; Bing, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Inter-basin water transfer enhances the human health risk of heavy metals in the middle and lower Han River, China. J. Hydrol. 2022, 613, 128423. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Cao, Z.; Lin, C.; Yang, Z. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China. Environ. Monit. Assess. 2010, 163, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, N.; Liu, D.; Zhang, Y. Assessment and source analysis of heavy metal contamination in water and surface sediment in Dongping Lake, China. Chemosphere 2022, 307, 136016. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhu, M. Research on the loss of water resources pollution in typical arid area based on the perspective of ecological civilization—Taking Xinjiang as an example. Water Resour. Hydropower Eng. 2019, 50, 164–169. [Google Scholar]
- Li, R.; Zhang, M.; Jin, S.; Xiong, Y.; Liu, Y. Regional difference and catastrophe of climate change over Urumqi River Basin. Geogr. Arid Reg. 2010, 33, 243–250. [Google Scholar]
- Yalikun, Z. Health Risk Assessment of Heavy Metal Pollution in Drinking Water Sources of Urumqi City. Energy Energy Conserv. 2021, 6, 84–86+97. [Google Scholar]
- Ding, T.; Li, Q.; Du, S.; Liu, Y.; Zhang, Y.; Zhang, J.; Wang, Y.; He, L. Pollution characteristics and ecological risk assessment of heavy metals in Shaying River Basin. Environ. Chem. 2019, 38, 2386–2401. [Google Scholar]
- Liu, Y.; Wang, Q.; Zhuang, W.; Yuan, Y.; Yuan, Y.; Jiao, K.; Wang, M.; Chen, Q. Calculation of Thallium’s toxicity coefficient in the evaluation of potential ecological risk index: A case study. Chemosphere 2018, 194, 562–569. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Meng, F.; Jiang, L.; Li, G.; Zhou, R. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Mar. Pollut. Bull. 2018, 126, 293–303. [Google Scholar] [CrossRef]
- El Azhari, A.; Rhoujjati, A.; El Hachimi, M.L.; Ambrosi, J.P. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicol. Environ. Saf. 2017, 144, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, M.; Chen, H.; Mai, B.; Xu, J. Research Progress in Environmental Exposure Factors of Chinese Population. Res. Environ. Sci. 2022, 35, 11. [Google Scholar]
- Li, H.; Nitivattananon, V.; Li, P. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis. Waste Manag. Res. 2015, 33, 401–409. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection. Exposure Factors Handbook of Chinese Population, Adults; Ministry of Environmental Protection: Beijing, China, 2013.
- United States Environmental Protection Agency (U.S. EPA). Guidelines for Exposure Assessment; Office of Health and Environmental Asses: Washington, DC, USA, 1992; Volume 186.
- Qin, X.-Q.; Huang, Q.-B.; Zhang, L.-K.; Zhou, J.-M.; Jiang, Z.-C.; Xu, G.-I. Distribution and health risk assessment of metals in groundwater around iron mine. China Environ. Sci. 2019, 39, 1934–1944. [Google Scholar]
- Wang, R.-S.; Xu, Q.-J.; Zhang, X.; Wei, Q.-S.; Yan, C.-Z. Health Risk Assessment of Heavy Metals in Typical Township Water Sources in Dongjiang River Basin. Environ. Sci. Technol. 2012, 33, 3083–3088. [Google Scholar]
- United States Environmental Protection Agency (U.S. EPA). Exposure Factors Handbook (1997, Final Report); EPA/600/P-95/002F a-c; U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- United States Environmental Protection Agency (U.S. EPA). Child-Specific Exposure Factors Handbook (2008, Final Report); EPA/600/R-06/096F; U.S. Environmental Protection Agency: Washington, DC, USA, 2008.
- United States Environmental Protection Agency (U.S. EPA). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual. Supplemental Guidance; “Standard DefaultExposure Factors” Interim Final; U.S. Environmental Protection Agency: Washington, DC, USA, 1991.
- Gao, J.J.; Zhang, L.P.; Huang, S.-B.; Ma, M.; Wang, Z.J. Preliminary Health Risk Assessment of Heavy Metals in Drinking Waters in Beijing. Huan Jing Ke Xue = Huanjing Kexue 2004, 25, 47–50. [Google Scholar]
- Ll, Y.-J.; Ll, Y.-H.; Wang, Z.-P. Geochemical Characteristics of Hatu Pluton in West Jungg of Xinjiang, China and Their Geological Significance. J. Earth Sci. Environ. 2022, 42, 1–14. [Google Scholar]
- Zhang, Z.; Jilili, A.; Jiang, F.; Muysal, T.; Wang, S. Contents and sources of heavy metals in surface water in the Tianshan Mountain. China Environ. Sci. 2012, 32, 1799–1806. [Google Scholar]
- Li, X.M.; Li, Q.Q.; Jie, Y.; Huang, S.F.; Zhang, S.Y.; Ji, M. Compound Pollution Characteristics and Ecological Risk Assessment of Heavy Metals in Soil and Groundwater of Typical Industrial Lands in Shanghai. Environ. Sci. Pollut. Res. 2022, 43, 5687–5697. [Google Scholar]
- Zhang, Q.-J.; Chen, Y.-S.; Liu, H.; Wang, J.-N. Heavy metal contamination in soils and enrichment capacity of typical tree species in shel terbelt along Hefei Loop Expressway. Chin. J. Ecol. 2021, 40, 1775–1782. [Google Scholar]
- Wu, L.; Liu, G.J.; Zhou, C.C.; Liu, R.Q. Temporal-spatial Distribution and Pollution Assessment of Dissolved Heavy Metals in Chaohu Lake. Environ. Sci. Technol. 2018, 39, 738–747. [Google Scholar]
- Wang, X.; Zhang, Y.; Huang, B.; Xie, E.; Fan, W.; Hu, W.; Zhao, Y. Accumulation and Sources of Heavy Metals in Agricultural Soil in a City Typical of the Yangtze River Delta, China. Acta Pedol. Sin. 2021, 58, 82–91. [Google Scholar]
Pi | Pn | Pollution Level |
---|---|---|
≤1 | ≤0.7 | Safety |
1–2 | 0.7–1.0 | Alert |
2–3 | 1.0–2.0 | Light pollution |
3 | 2.0 | Heavy pollution |
Element | C (cm·h−1) | D (mg·kg−1·day−1) | f (kg·day·mg−1) | |||
---|---|---|---|---|---|---|
Drinking Water Exposure | Skin Exposure | Drinking Water Exposure | Skin Exposure | |||
Carcinogenic | Cr | 0.002 | 0.003 | 0.003 | 0.5 | 20 |
As | 0.0018 | 0.0003 | 0.000123 | 1.5 | 3.66 | |
Non-carcinogenic | Mn | 0.0001 | 0.046 | 0.0008 | ||
Al | 0.01 | 0.14 | 0.14 | |||
Cu | 0.0006 | 0.04 | 0.012 | |||
Fe | 0.0001 | 0.3 | 0.045 | |||
Pb | 0.000004 | 0.0014 | 0.00042 | |||
Zn | 0.0006 | 0.3 | 0.06 |
As | Al | Cr | Mn | Cu | Fe | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Range | 0–18.9 | 415.3–945.6 | 0–1 | 0–5.9 | 0–0.9 | 5.6–55.7 | 0–6.7 | 12.3–135.5 |
Average | 4.97 | 663.73 | 0.12 | 1.61 | 0.06 | 14.43 | 1.92 | 63.52 |
Standard deviation | 4.71 | 136.05 | 0.3 | 1.42 | 0.18 | 8.36 | 1.91 | 24.66 |
Coefficient of variation (%) | 94.64 | 20.5 | 255.18 | 87.86 | 303.37 | 57.94 | 99.55 | 38.82 |
Percentage of sample points exceeding the standard (%) | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Standard limit 1 | 50 | 200 | 50 | 100 | 1000 | 300 | 10 | 1000 |
Standard limit 2 | 50 | - | 50 | 1000 | - | 50 | 1000 |
Element | Via Drinking Water Route | Via Dermal Route | Total Elemental Risk (R) | ||||
---|---|---|---|---|---|---|---|
Adults | Children | Adults | Children | Adults | Children | ||
Carcinogenic | As (×10−5) | 0.35 | 0.39 | 8.06 | 5.66 | 8.42 | 6.05 |
Cr (×10−5) | 0.01 | 0.00 | 1.00 | 0.70 | 1.01 | 0.71 | |
Non-carcinogenic | Al (×10−9) | 2.35 | 2.56 | 0.12 | 85.32 | 2.47 | 87.88 |
Cu (×10−12) | 0.51 | 0.56 | 5.46 | 3.74 | 5.97 | 4.30 | |
Fe (×10−11) | 2.25 | 2.46 | 7.78 | 5.46 | 10.04 | 7.92 | |
Mn (×10−10) | 4.96 | 0.18 | 0.17 | 3.48 | 5.13 | 3.66 | |
Pb (×10−10) | 6.53 | 7.13 | 0.45 | 0.32 | 6.99 | 7.45 | |
Zn (×10−9) | 0.10 | 0.11 | 1.62 | 1.14 | 1.72 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, H.; Mamattursun, A.; Ablikin, K.; Mijit, N. Spatial Distribution of Al, Zn, Fe, As, Pb, Mn, Cr, and Cu in Surface Waters of the Urumqi River Basin, China, and Assessment of Risks to Ecosystems and Human Health. Water 2023, 15, 3079. https://doi.org/10.3390/w15173079
Chen Y, Yang H, Mamattursun A, Ablikin K, Mijit N. Spatial Distribution of Al, Zn, Fe, As, Pb, Mn, Cr, and Cu in Surface Waters of the Urumqi River Basin, China, and Assessment of Risks to Ecosystems and Human Health. Water. 2023; 15(17):3079. https://doi.org/10.3390/w15173079
Chicago/Turabian StyleChen, Yang, Han Yang, Azimatjan Mamattursun, Kamila Ablikin, and Nazakat Mijit. 2023. "Spatial Distribution of Al, Zn, Fe, As, Pb, Mn, Cr, and Cu in Surface Waters of the Urumqi River Basin, China, and Assessment of Risks to Ecosystems and Human Health" Water 15, no. 17: 3079. https://doi.org/10.3390/w15173079