# A Review of Research Methods and Evolution Mechanisms of Landslide-Induced Tsunamis

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Landslide Surge Cases

#### 2.1. Classification of Landslide Surges

#### 2.2. Study on the Mechanism of Landslide Surge

## 3. Landslide Surge Research Methods

#### 3.1. Theoretical Analysis of Landslide Surge

#### 3.1.1. Surge Generation Stage

#### 3.1.2. Propagation Stage

#### 3.2. Physical Model Test Method

#### 3.2.1. Physical Model

#### 3.2.2. Surge Generation Stage

#### 3.2.3. Propagation Process Stage

#### 3.2.4. Surge Climbing Stage

#### 3.3. Numerical Method

#### 3.3.1. Surge Generation Stage

#### 3.3.2. Propagation Process Stage

## 4. Study on Influence Factors and Mechanism of Landslide Surge

#### 4.1. Sliding Body Factor

#### 4.2. Water Body Factor

## 5. Difficulties and Problems of Landslide Surge Research

#### 5.1. Theoretical Analysis Method

#### 5.2. Physical Model Test Method

#### 5.3. Numerical Method

## 6. Conclusions

#### 6.1. Theoretical Analysis Method

#### 6.2. Physical Model Test Method

#### 6.3. Numerical Method

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Wu, S. Theory and Technology of Landslide Risk Assessment; Science Press: Beijing, China, 2012; pp. 8–75. [Google Scholar]
- Li, H.; Tan, Y.; Li, E. Research on quantitative of landslide assessment disaster risk in reservoir area of Kala hydropower station. Chin. J. Undergr. Space Eng.
**2013**, 9 (Suppl. S2), 2040–2046. [Google Scholar] - Yuan, P.Y.; Wang, P.Y.; Zhao, Y.; Wang, M.L. Experimental study on the nonlinear behavior of a sailing container ship under landslide induced surges. Adv. Civ. Eng.
**2019**, 2019, 9081586. [Google Scholar] [CrossRef] - Wang, P.; Han, L.; Yu, T.; Meng, C. Effects of landslide generated impulse waves on ship impact force for pile wharf. J. Harbin Eng. Univ.
**2016**, 37, 878–884. [Google Scholar] - Yin, K.; Liu, Y.; Wang, Y.; Jiang, Z. Physical model experiments of landslide-induced surge in Three Gorge Reservoir. Earth Sci. (J. China Univ. Geosci.)
**2012**, 37, 1067–1074. [Google Scholar] - Han, L.; Wang, P. Prediction of the maximum near-field wave amplitude of impulse waves generated by three dimensional landslides based on momentum balance. Chin. J. Rock Mech. Eng.
**2018**, 37, 2584–2592. [Google Scholar] - Viroulet, S.; Sauret, A.; Kimmoun, O. Tsunami generated by a granular collapse down a rough inclined plane. EPL (Europhys. Lett.)
**2014**, 105, 34004. [Google Scholar] [CrossRef] - Huang, B.; Wang, S.; Chen, X.; Yin, Y.; Jiang, Z. Prototype physical similarity experimental study on surgegenerated by instability of cataclastic rock mass. Chin. J. Rock Mech. Eng.
**2013**, 32, 1417–1425. [Google Scholar] - Zweifel, A.; Hager, W.H.; Minor, H.E. Plane impulse waves in reservoirs. J. Waterw. Port Coast. Ocean Eng.
**2006**, 132, 358–368. [Google Scholar] [CrossRef] - Yue, S.; Diao, M.; Wang, L. Research on initial formation and attenuation of landslide-generated waves. J. Hydraul. Eng.
**2016**, 47, 816–825. [Google Scholar] - Wang, M.; Zu, F.; Wang, P.; Han, L. Head Wave Energy Analysis of Landslide Surge in Mountainous Channel Reservoir. Waterw. Eng.
**2020**, 143, 79–83. [Google Scholar] - Wang, J.; Wang, L.; Chen, X. Calculation of lenggu hydroelectric station landslide surge height based on pan jiazheng calculation method of speed and surge. Water Resour. Power
**2010**, 9, 95–98. [Google Scholar] - Wang, Y.; Liu, J.; Zhang, Y.; Yin, K.; Huo, Z. Review of wave amplitude prediction generatedbylandslide based on physical experiments. Geol. Miner. Resour. South China
**2018**, 34, 279–288. [Google Scholar] - Yin, K.; Du, J.; Wang, Y. Analysis of surge triggered by Dayantang landslide in Shuibuya reservoir of Qingjiang river. Rock Soil Mech.
**2008**, 29, 3266–3270. [Google Scholar] - Dai, Y.; Yin, K.; Wang, Y. Discussion on method of landslide velocity calculation and surge prediction. Rock Soil Mech.
**2008**, 29, 407–411. [Google Scholar] - Du, B. Tangyanguang landslide of tuoxi reservior-first large landslide induced by reservoir storage in China. In Proceedings of the Symposium of the Second Conference of Chinese Geotechnical and Engineering, Wuhan, China, 28–31 October 2006; China Science and Technology Press: Beijing, China, 2006; Volume 1, pp. 918–922. [Google Scholar]
- Zhong, L. Enlightenment from vajont landslide in Italy. Chin. J. Geol. Hazard Control
**1993**, 5, 77–84. [Google Scholar] - Hermann, M.F. Initial Phase of Landslide Generated Impulse Waves; VAW Publikationen: Zurich, Switzerland, 2002. [Google Scholar]
- Chen, L. Destroying tsunamis generated by landslides in history. Yangtze River
**1984**, 2, 88. (In Chinese) [Google Scholar] - Huang, R. Typical Catastrophic Landslide in China; Science Press: Beijing, China, 2008. [Google Scholar]
- Huang, B.; Yin, Y.; Liu, G.; Wang, S.; Chen, X.; Huo, Z. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on 23 November 2008. Landslides
**2012**, 9, 395–405. [Google Scholar] [CrossRef] - Liao, Q.; Li, X.; Li, S.; Dong, Y. Occurrence, geology and geomorphology of Qianjiangping landslide in Three Gorges Reservoir area Study on characteristics, cause and landslide criterion. J. Rock Mech. Eng.
**2005**, 17, 3146–3153. [Google Scholar] - Huang, B.; Yin, Y.; Du, C. Risk management study on impulse waves generated by Hongyanzi landslide in Three Gorges Reservoir of China on 24 June 2015. Landslides
**2016**, 13, 603–616. [Google Scholar] [CrossRef] - Zhang, H.; Lin, F. Preliminary study on the characteristics and formation mechanism of small dam landslide in Fuquan, Guizhou. Sci. Technol. Eng.
**2015**, 15, 1617–1815. [Google Scholar] - Du, J.; Wang, Y.; Peng, G.; Yin, K. Surge prediction of dashiban landslide in three gorges reservoir. Saf. Environ. Eng.
**2007**, 14, 92–95. [Google Scholar] - Jin, D.; Wang, G. Tangyanguang landslide in Tuoxi Reservoir. In Typtical Landslides in China; Science Press: Beijing, China, 1986. (In Chinese) [Google Scholar]
- Sorensen, R.M. Basic Wave Mechanics: For Coastal and Ocean Engineers; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Kong, L. Fluid Mechanics; Higher Education Press: Beijing, China, 2004. [Google Scholar]
- Wang, S. Fluid Mechanics; China Electric Power Press: Beijing, China, 2007. [Google Scholar]
- Wang, Y.; Yin, K. Perturbation method of superposing initial surge height of landslide along reservoir shoreline. Chin. J. Rock Mech. Eng.
**2004**, 23, 717–720. [Google Scholar] - Heller, V. Landslide Generated Impulse Waves: Prediction of Near Field Characteristics. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2007. [Google Scholar]
- Heller, V.; Hager, H.W.; Minor, H.-E. Landslide Generated Impulse Waves in Reservoirs: Basics and Computation; VAW Publikationen: Zürich, Switzerland, 2009. [Google Scholar]
- Heller, V.; Hager, W.H. Impulse Product Parameter in Landslide Generated Impulse Waves. J. Waterw. Port Coast. Ocean. Eng.
**2010**, 136, 145–155. [Google Scholar] [CrossRef] - Panizzo, A.; De Girolamo, P.; Petaccia, A. Forecasting impulse waves generated by subaerial landslides. J. Geophys. Res. Ocean.
**2005**, 110, C12025. [Google Scholar] [CrossRef] - Noda, E. Water waves generated by landslides. J. Waterw. Harb. Coast. Eng.
**1970**, 96, 835–853. [Google Scholar] [CrossRef] - Mou, P.; Wang, P.; Han, L.; Meng, C. China’s safety production science and technology, review of physical model test research on landslide and surge disaster. J. Saf. Sci. Technol.
**2020**, 16, 43–49. [Google Scholar] - Xu, W. Research on factors affecting landslide surge. J. Eng. Geol.
**2012**, 20, 491–507. [Google Scholar] - Watts, P.; Grilli, S.T.; Kirby, J.T.; Fryer, G.J.; Tappin, D. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat. Hazards Earth Syst. Sci.
**2003**, 3, 391–402. [Google Scholar] [CrossRef] - Di Risio, M.; Sammarco, P. Analytical modeling of landslide generated waves. J. Waterw. Port Coast. Ocean Eng.
**2008**, 134, 53–60. [Google Scholar] [CrossRef] - Liu, P.L.-F.; Lynett, P.; Synolakis, C.E. Analytical solutions for forced long waves on a sloping beach. J. Fluid Mech.
**2003**, 478, 101–109. [Google Scholar] [CrossRef] - Qin, Y.; Jiang, Q.; Guo, H. Discussion on two methods for predicting velocity of landslides. Rock Soil Mech.
**2008**, 29 (Suppl. S1), 373–378. [Google Scholar] - Hu, J.; Wang, D.; Hu, B. Analysis on reservoir landslides and its surge. J. East China Jiaotong Univ.
**2003**, 20, 26–30. [Google Scholar] - Haugen, K.B.; Løvholt, F.; Harbitz, C.B. Fundamental mechanisms for tsunami generation by submarine mass flows in idealized geometries. Mar. Pet. Geol.
**2005**, 22, 209–217. [Google Scholar] [CrossRef] - Ursell, F.; Dean, R.G.; Yu, Y.S. Forced small-amplitude water waves: A comparison of theory and experiment. J. Fluid Mech.
**1960**, 7, 33–52. [Google Scholar] [CrossRef] - Kennard, E.H. Generation of surface waves by a moving partition. Q. Appl. Math.
**1949**, 7, 303–312. [Google Scholar] [CrossRef] - Das, M.M.; Wiegel, R.L. Waves generated by horizontal motion of a wall. J. Waterw. Port Coast. Ocean Eng.
**1972**, 98, 49–65. [Google Scholar] [CrossRef] - Pan, J. Stability against Sliding of Buildings and Analysis of Landslide; China Water Power Press: Beijing, China, 1980. [Google Scholar]
- Li, M.; Wang, R.; Liu, X. On landslide surge and waveform spreading. J. Zhejiang Water Conserv. Hydropower Coll.
**2003**, 15, 5–7. [Google Scholar] - Ha, Q.; Hu, W. The calculation of landslide surge in reservoir. Yellow River
**1980**, 2, 30–36. [Google Scholar] - Law, L.; Brebner, A. On Water Waves Generated by Landslides. In Proceedings of the 3rd Australasian Conference on Hydraulics and Fluid Mechanics, Sydney, Australia, 25–29 November 1968; The Institution of Engineers: Sydney, Australia, 1968; pp. 155–159. [Google Scholar]
- Bruce, H. Water waves generated by distant landslides. J. Hydraul. Res.
**1988**, 26, 307–322. [Google Scholar] - Wiegel, R.L. Laboratory studies of gravity waves generated by the movement of a submerged body. Trans. Am. Geo Phys. Union
**1955**, 36, 759–774. [Google Scholar] [CrossRef] - Ataie-Ashtiani, B.; Nik-Khah, A. Impulsive waves caused by sub-aerial landslides. J. Environ. Fluid Mech
**2008**, 8, 263–280. [Google Scholar] [CrossRef] - Ke, C.; Wang, Y.; Huo, Z.; Zhang, Y.; Liu, J. Study on the prediction model of initial surge amplitude of high and steep reservoir bank landslide. Saf. Environ. Eng.
**2021**, 28, 164–169. [Google Scholar] - Kamphuis, J.W.; Bowering, R.J. Impulse waves generated by landslides. In Proceedings of the 12th International Conference on Coastal Engineering, Washington, DC, USA, 13–18 September 1970; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar]
- Huang, J.; Zhang, T.; Li, J. Comparative analysis of empirical estimation methods for landslide surge on reservoir bank. Geotech. Mech.
**2014**, 35, 133–140. [Google Scholar] - Ding, J.; Deng, H.; Wu, J.; Yong, M. Physical model test of landslide surge in a reservoir area of Lancang River. J. Yangtze River Acad. Sci.
**2017**, 34, 39–44. [Google Scholar] - Li, R.; Jiang, C.; Deng, B.; Liu, Y. Surge height and propagation law of landslide in narrow channel near dam reservoir area. Traffic Sci. Eng.
**2016**, 32, 79–84. [Google Scholar] [CrossRef] - Xiao, L.; Yin, K.; Wang, J.; Liu, Y. Reservoir bank landslide impact surge based on physical simulation test. J. Cent. South Univ. (Nat. Sci. Ed.)
**2014**, 45, 1618–1626. [Google Scholar] - McFall, B.C.; Fritz, H.M. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc. R. Soc. A Math.
**2016**, 472, 20160052. [Google Scholar] [CrossRef] [PubMed] - Mohammed, F. Physical Modeling of Tsunamis Generated by Three-Dimensional Deformable Granular Landslides; Georgia Institute of Technology: Atlanta, GA, USA, 2010. [Google Scholar]
- Liu, Y. Research on Landslide-Induced Surge in Three Gorges Reservoir Area; China University of Geosciences: Wuhan, China, 2013. [Google Scholar]
- Xue, H.; Ma, Q.; Diao, M.; Jiang, L. Propagation characteristics of sub aerial landslide-generated impulse waves. Environ. Fluid Mech.
**2018**, 19, 203–230. [Google Scholar] [CrossRef] - Li, Y.; Wang, P.; Hu, X. Calculation and research of landslide surge in mountain river-type reservoirs. J. Chongqing Jiaotong Univ. (Nat. Sci. Ed.)
**2011**, 30, 295–299. [Google Scholar] - Yang, Q.; Wang, P.; Yu, T.; Chen, L. Analysis of surge climbing test of steep rock landslide in the Three Gorges reservoir area. China J. Geol. Hazards Prev.
**2014**, 25, 43–48+55. [Google Scholar] - Hall, J.V.; Watts, G.M. Laboratory Investigation of the Vertical Rise of Solitary Wave on Impermeable Slopes; U. S. Army Corps of Engineers Beach Erosion Board: Washington, DC, USA, 1953. [Google Scholar]
- Synolakis, C.E. The Runup of Solitary Waves. J. Fluid Mech.
**1987**, 185, 523–545. [Google Scholar] [CrossRef] - Müller, D.R. Auflaufen Undüberschwappen von Impulswellen an Talsperren (Run-Up and Run-Over of Impulse Waves at Dams); VAW-Mitteilung 137; ETH Zurich: Zurich, Switzerland, 1995. [Google Scholar]
- Biscarini, C. Computational fluid dynamics modelling of landslide generated water waves. Landslides
**2010**, 7, 117–124. [Google Scholar] [CrossRef] - Serrano-Pacheco, A.; Murillo, J.; García-Navarro, P. A finite volume method for the simulation of the waves generated by landslides. J. Hydrol.
**2009**, 373, 273–289. [Google Scholar] [CrossRef] - Xu, W. CEL algorithm study of reservoir surge Induced by landslide. J. Eng. Geol.
**2012**, 20, 350–354. [Google Scholar] - Li, W.; Yue, G.; Wang, H. Dynamic mechanism of high speed landslide surge. J. Nat. Disasters
**2013**, 22, 127–133. [Google Scholar] - Song, X.; Xing, A.; Chen, L. Numerical simulation of two-dimensional water waves due to landslide based on FLUENT. Hydrogeol. Eng. Geol.
**2009**, 36, 90–94. (In Chinese) [Google Scholar] - Yuk, D.; Yim, S.C.; Liu, P.F. Numerical modeling of submarine mass-movement generated waves using RANS model. Comput. Geosci.
**2006**, 32, 927–935. [Google Scholar] [CrossRef] - Abadie, S.; Morichon, D.; Grilli, S.; Glockner, S. Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coast. Eng.
**2010**, 57, 779–794. [Google Scholar] [CrossRef] - Liu, P.F.; Wu, T.R.; Raichlen, F.; Synolakis, C.E.; Borrero, J.C. Run-up and rundown generated by three-dimensional sliding masses. J. Fluid Mech.
**2005**, 536, 107–144. [Google Scholar] [CrossRef] - Liu, G.; Liu, M. Smoothed Particle Hydrodynamics—A Meshfree Particle Method; World Scientific Publishing Company: Singapore, 2003; pp. 26–32. [Google Scholar]
- Ren, K.; Han, J. Experimental research on primary wave height generated by loose earth landslide. Yangtze River
**2011**, 42, 69–72. [Google Scholar] - Xu, B.; Jiang, C.; Deng, B. Three dimensional numerical simulations of water waves generated by landslides and its propagation process. J. Transp. Sci. Eng.
**2011**, 27, 39–45. [Google Scholar] - Bosa, S.; Petti, M. A numerical model of the wave that overtopped the Vajont Dam in 1963. Water Resour. Manag.
**2013**, 27, 1763–1779. [Google Scholar] [CrossRef] - Ataie-Ashtiani, B.; Yavari-Ramshe, S. Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides
**2011**, 8, 417–432. [Google Scholar] [CrossRef] - Wang, S.; Huang, B.; Liu, G.; Chen, X. Numerical simulation of tsunami due to slope failure at Gongjiafang on Three Gorges Reservoir. Rock Soil Mech.
**2015**, 36, 212–218. (In Chinese) [Google Scholar] - Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H.; Yalciner, A.C.; Mokhtari, M.; Esmaeily, A. Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng.
**2008**, 35, 774–786. [Google Scholar] [CrossRef] - Jiang, Z.B.; Jin, F.; Sheng, J. Numerical simulations of water waves due to landslide. J. Yangtze River Sci. Res. Inst.
**2005**, 22, 1–3. [Google Scholar] - Shen, Y.M.; Ng, C.O.; Zheng, Y.H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-εturbulence modeling. Ocean Eng.
**2004**, 31, 87–95. [Google Scholar] [CrossRef] - Teng, G.; Zhang, Y.; Chen, J. Comparison of the Application of the Empirical Estimation Method for Reservoir Bank Landslide Surge. Henan Sci. Technol.
**2021**, 40, 69–72. [Google Scholar] - Deng, C.; Dang, F.; Chen, X. Study on the surge wave propagation in the reservoir area and its interaction mechanism with the dam. J. Hydraul. Eng.
**2019**, 50, 815–823. [Google Scholar]

**Figure 1.**Relative position of landslide and water (

**a**) landslide surges induced by the collapse masses above water surface, which involves the movement of solid, water and air. (

**b**) landslide surges induced by collapse masses that are partially under water surface. (

**c**) landslide surges induced by underwater collapse masses.

Number | Time | Location | Landslide Volume (10 ^{4} m^{3}) | Failure Mode | Number of Deaths |
---|---|---|---|---|---|

1 | 1792 | Senyun, Japan [12] | 535 | The formation of 10 m high surge. | 15,000 |

2 | 1933 | Diexi, Minjiang River, China [13] | - | - | 8800 |

3 | 1956 | Lanfjord, Norway [14] | 12 | The formation of 140 m high surge. | 32 |

4 | 1958 | Lituya landslide in Alaska, USA [15] | 30 | The formation of 30 m high surge. | 2 |

5 | 1958 | Italy Pontesei arch dam reservoir area [15] | - | A 20 m high surge over the dam. | 1 |

6 | 1961 | Zishui Zhexi Reservoir, Hunan Province, China [16] | 1.65 | Damage caused by 21 m high surge over dam. | 40 |

7 | 1963 | Italy vajont reservoir [17] | 240 | A 175 m surge overtop | 3000 |

8 | 1971 | Peru chungar lake shore [15] | 0.1 | The formation of 30 m high surge. | 300–500 |

9 | 1980 | Mount St. Helens Spirit Lake [18] | 2500 | The landslide whipped up a more than 200 m high surge | - |

10 | 1982 | Jibazi landslide in Yunyang County, Three Gorges Reservoir Area, China [19] | - | The river shoreline advanced inward more than 50 m, the riverbed silt height of 30 m. | - |

11 | 1985 | Xintan Landslide, Zigui County, Three Gorges Reservoir Area, China [20,21] | 30 | Initial waves of up to 49 m destroyed nearby ships. | 10 |

12 | 2002 | Stromboli, Italy [15] | - | The formation of 10.9 m high surge. | 2 |

13 | 2003 | Qianjiangping Village in Three Gorges Reservoir Area of China [20] | 24 | Up to 30 m surges destroyed 120 acres of farmland nearby. | 14 |

14 | 2007 | Shuibuya Dam, China [22] | 3 | The formation of 50 m high surge. | 1 |

15 | 2008 | GongJiaFang, Wushan, Chongqing, China [23] | 0.38 | Waves about 15 m high formed on the opposite bank. | - |

16 | 2009 | The landslide in Xiaowan | 1 | The landslide whipped up a 30 m high surge | 24 |

17 | 2014 | Xiaoba landslide in Guizhou province [24] | 0.33 | The landslide whipped up a 20 m high surge | 12 |

18 | 2015 | Chongqing Wushan Daning River Jiangdong Temple North Shore [25,26] | - | A 6 m high surge toppled nearby boats. | 1 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xin, C.; He, Z.; Feng, W.
A Review of Research Methods and Evolution Mechanisms of Landslide-Induced Tsunamis. *Water* **2023**, *15*, 1879.
https://doi.org/10.3390/w15101879

**AMA Style**

Xin C, He Z, Feng W.
A Review of Research Methods and Evolution Mechanisms of Landslide-Induced Tsunamis. *Water*. 2023; 15(10):1879.
https://doi.org/10.3390/w15101879

**Chicago/Turabian Style**

Xin, Chunlei, Zhiqian He, and Wenkai Feng.
2023. "A Review of Research Methods and Evolution Mechanisms of Landslide-Induced Tsunamis" *Water* 15, no. 10: 1879.
https://doi.org/10.3390/w15101879