Isotope Composition of Natural Water in Lake Onega Basin
Abstract
1. Introduction
2. Site Description
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Filatov, N.N.; Kalinkina, N.M.; Kulikova, T.P.; Litvinenko, A.V.; Lozovik, P.A. The Current State and Changes of Ecosystems of Large Lakes- Reservoirs of the North-West European Territory of Russia under Climate Change and Human Impact; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2015. [Google Scholar]
- Bogachev, M.A.; Borodulina, G.S.; Igonin, A.; Karpechko, V.A.; Katra, K.; Kotkasaari, T.; Litvinenko, A.V.; Litvinova, I.A.; Lozovik, P.A.; Morozov, A.K.; et al. Water Resources of the Republic of Karelia and Their Use for Drinking Water Supply. Experience in Karelian-Finnish Cooperation; Petrozavodsk-Kuopio; Karelian Research Center of RAS: Petrozavodsk, Russia, 2006. [Google Scholar]
- Lozovik, P.A. The Largest Lakes-Reservoirs of the North-West of the European Territory of Russia: The Current State and Changes in Ecosystems under Climatic and Man-Induced Impact; KarRC RAS: Petrozavodsk, Russia, 2015; pp. 88–95. [Google Scholar]
- Efremova, T.A.; Sabylina, A.V.; Lozovik, P.A.; Slaveykova, V.I.; Zobkova, M.V.; Pasche, N. Seasonal and spatial variation in hydrochemical parameters of Lake Onego (Russia): Insights from 2016 field monitoring. Inland Waters 2019, 9, 227–238. [Google Scholar] [CrossRef]
- Vodogretsky, V.E. Karelia and Northwest Russia; Surface Water Resources of the USSR: Hydrometeoizdat, Leningrad, 1972. [Google Scholar]
- Filatov, N.N. Lake Onega. In Atlas; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2010. [Google Scholar]
- Podsechin, V.; Kaipainen, H.; Filatov, N.; Bilaletdin, Ä.; Frisk, T.; Paananen, A.; Terzhevik, A.; Vuoristo, H. Development of Water Protection of Lake Onega; Final Report; Pirkanmaa Regional Environment Centre: Tampere, Finland, 2009.
- Moiseenko, T.; Sharov, A. Large Russian Lakes Ladoga, Onega, and Imandra under Strong Pollution and in the Period of Revitalization: A Review. Geosciences 2019, 9, 492. [Google Scholar] [CrossRef]
- Filatov, N.; Baklagin, V.; Efremova, T.; Nazarova, L.; Palshin, N. Climate change impacts on the watersheds of Lakes Onego and Ladoga from remote sensing and in situ data. Inland Waters 2019, 9, 130–141. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Adrian, R.; Arvola, L.; Blenckner, T.; Dokulil, M.T.; Hari, R.E.; George, G.; Jankowski, T.; Järvinen, M.; Jennings, E.; et al. Regional and supra-regional coherence in limnological variables. In The Impact of Climate Change on European Lakes; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Sabylina, A.V.; Lozovik, P.A.; Zobkov, M.B. Water chemistry in Lake Onega and its tributaries. Water Resour. 2010, 37, 842–853. [Google Scholar] [CrossRef]
- Sabylina, A.V.; Ryzhakov, A.V. Hydrochemical Characteristic of the Littoral Zone of Lake Onega. Water Resour. 2018, 45, 213–221. [Google Scholar] [CrossRef]
- Filatov, N.N.; Vyruchalkina, T.Y. Many-year level variations in the Great Lakes of Eurasia and North America. Water Resour. 2017, 44, 685–696. [Google Scholar] [CrossRef]
- Mook, W.G. Environmental isotopes in the hydrological cycle. In Principles and Applications; UNESCO: Paris, France, 2001. [Google Scholar]
- Ferronsky, V.; Polyakov, V. Isotopes of the Earth’s Hydrosphere; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Ferronsky, V.I.; Dubinchuk, V.T.; Polyakov, V.A.; Seletsky, Y.B.; Kuptsov, V.M.; Yakubovsky, A.V. Natural Isotopes of the Hydrosphere; Nedra: Moscow, Russia, 1975. [Google Scholar]
- Gibson, J.; Birks, S.; Jeffries, D.; Yi, Y. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys. J. Hydrol. 2017, 544, 500–510. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Gibson, J.; Prepas, E.; McEachern, P. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of Boreal lakes. J. Hydrol. 2002, 262, 128–144. [Google Scholar] [CrossRef]
- Horita, J.; Rozanski, K.; Cohen, S. Isotope effects in the evaporation of water: A status report of the Craig–Gordon model. Isot. Environ. Health Stud. 2008, 44, 23–49. [Google Scholar] [CrossRef]
- Chen, K.; Meng, Y.; Liu, G.; Xia, C.; Zhou, J.; Li, H. Identifying hydrological conditions of the Pihe River catchment in the Chengdu Plain based on spatio-temporal distribution of 2H and 18O. J. Radioanal. Nucl. Chem. 2020, 324, 1125–1140. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J. A review and evaluation of catchment transit time modeling. J. Hydrol. 2006, 330, 543–563. [Google Scholar] [CrossRef]
- Niinikoski, P.I.A.; Hendriksson, N.M.; Karhu, J.A. Using stable isotopes to resolve transit times and travel routes of river water: A case study from southern Finland. Isot. Environ. Health Stud. 2016, 52, 380–392. [Google Scholar] [CrossRef]
- Rodgers, P.; Soulsby, C.; Waldron, S.; Tetzlaff, D. Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment. Hydrol. Earth Syst. Sci. 2005, 9, 139–155. [Google Scholar] [CrossRef]
- Timsic, S.; William, P. Spatial variability in stable isotope values of surface waters of Eastern Canada and New England. J. Hydrol. 2014, 511, 594–604. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Meng, Y.; Xia, C.; Chen, K.; Chen, Y. Using stable isotopes as tracer to investigate hydrological condition and estimate water residence time in a plain region, Chengdu, China. Sci. Rep. 2021, 11, 2812. [Google Scholar] [CrossRef]
- Kulik, N.; Efremenko, N.; Strakhovenko, V.; Belkina, N.; Borodulina, G.; Gatalskaya, E.; Malov, V.; Tokarev, I. Geochemical Features of River Runoff and Their Effect on the State of the Aquatic Environment of Lake Onego. Water 2023, 15, 964. [Google Scholar] [CrossRef]
- Lozovik, P.A.; Zobkov, M.B.; Borodulina, G.S.; Tokarev, I.V. Assessing External Water Exchange of Lake Bays by Water Chemistry Characteristics. Water Resour. 2019, 46, 94–102. [Google Scholar] [CrossRef]
- Rukhovets, L.; Filatov, N. (Eds.) Ladoga and Onego—Great European lakes. In Observations and Modeling; Springer: Berlin/Heidelberg, Germany, 2010; 302p. [Google Scholar]
- Borodulina, G.S. Role of groundwater flow to lakes of the Onega watershed in formation of the chemical composition of lake water. Proc. Karelian Res. Cent. RAS Limnol. Ser. 2011, 4, 108–116. [Google Scholar]
- Borodulina, G.S.; Tokarev, I.V. Geochemical and isotopic characteristics of groundwater and surface water in the Paleoproterozoic Onega structure. In Integrated Problems in Hydrogeology; St. Petersburg State University: St. Petersburg, FL, USA, 2013. [Google Scholar]
- Borodulina, G.S.; Tokarev, I.V.; Levichev, M.A. Isotopic Composition (δ18O, δ2H) of Karelian Snow Cover. Water Resour. 2022, 49 (Suppl. 1), S90–S98. [Google Scholar] [CrossRef]
- Filatov, N.N.; Kukharev, V.I. (Eds.) Lakes of Karelia; A reference book; KarRC RAS: Petrozavodsk, Russia, 2013; 461p. [Google Scholar]
- Lozovik, P.A.; Kulikova, T.P.; Martynova, N.N. Condition of Water Bodies in the Republic of Karelia: The Results of 1998–2006 Monitoring; Karelian Research Center of the RAS: Petrozavodsk, Russia, 2007. [Google Scholar]
- Efremova, T.; Palshin, N.; Zdorovennov, R. Long-term characteristics of ice phenology in Karelian lakes. Est. J. Earth Sci. 2013, 62, 33. [Google Scholar] [CrossRef]
- Sabylina, A.V.; Efremova, T.A. The chemical composition of ice and water under ice of Lake Onega (the case of Petrozavodsk Bay). Ice Snow 2018, 58, 417–428. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and the Evolution of Their Ice Cover; Springer: Berlin/Heidelberg, Germany, 2015; pp. 84–265. [Google Scholar]
- Salo, Y.A.; Nazarova, L.E.; Balagansky, A.F. Computations of evaporation from watersheds of North-Western Russia. Proc. Karelian Res. Cent. RAS Limnol. 2016, 9, 95–101. [Google Scholar] [CrossRef]
- Martínez, D.E.; Londoño, O.M.Q.; Solomon, D.K.; Dapeña, C.; Massone, H.E.; Benavente, M.A.; Panarello, H.O. Hydrogeochemistry, Isotopic Composition and Water Age in the Hydrologic System of a Large Catchment within a Plain Humid Environment (Argentine Pampas): Quequén Grande River, Argentina. River Res. Appl. 2017, 33, 438–449. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kocman, D.; Miljević, N.; Vreča, P.; Vrzel, J.; Povinec, P. Distribution of H and O stable isotopes in the surface waters of the Sava River, the major tributary of the Danube River. J. Hydrol. 2018, 565, 365–373. [Google Scholar] [CrossRef]
- Malov, A.; Tokarev, I. Using stable isotopes to characterize the conditions of groundwater formation on the eastern slope of the Baltic Shield (NW Russia). J. Hydrol. 2019, 578, 124130. [Google Scholar] [CrossRef]
- Voronyuk, G.Y.; Borodulina, G.S.; Krainyukova, I.A.; Tokarev, I.V. Water exchange on the Baltic Shield margin and in adjacent artesian basins: Isotope and chemical data (scientific and applied aspects). Karelian Isthmus. Proc. Karelian Res. Cent. RAS Limnol. Ser. 2016, 9, 46–56. [Google Scholar] [CrossRef]
- Tokarev, I.; Rumyantsev, V.; Rybakin, V.; Yakovlev, E. Inflow of surface and groundwater to Lake Ladoga based on stable isotope (2H, 18O) composition. J. Great Lakes Res. 2022, 48, 890–902. [Google Scholar] [CrossRef]
- Borodulina, G.; Tokarev, I.; Avramenko, I. Investigation of small river watershed hydrology in Karelia (North- West Russia) by high-resolution record of δ2H and δ18O in precipitation and river discharge, including experimental estimates of evaporation. In Book of Extended Synopses. International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers; IAEA: Vienna, Austria, 2015; Volume 3, pp. 174–176. [Google Scholar]
- Uhlenbrook, S.; Frey, M.; Leibundgut, C.; Maloszewski, P. Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resour. Res. 2002, 38, 1096. [Google Scholar] [CrossRef]
- Vasil’chuk, Y.K.; Rets, E.; Chizhova, J.N.; Tokarev, I.; Frolova, N.L.; Budantseva, N.A.; Kireeva, M.; Loshakova, N.A. Hydrograph separation of the Dzhankuat River, North Caucasus, with the use of isotope methods. Water Resour. 2016, 43, 847–861. [Google Scholar] [CrossRef]
- Sarkkola, S.; Nieminen, M.; Koivusalo, H.; Laurén, A.; Kortelainen, P.; Mattsson, T.; Palviainen, M.; Piirainen, S.; Starr, M.; Finér, L. Iron concentrations are increasing in surface waters from forested headwater catchments in eastern Finland. Sci. Total. Environ. 2013, 463–464, 683–689. [Google Scholar] [CrossRef]
Winter (114) * | Spring (75) | Summer (126) | Autumn (98) | For 2009–2018 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | |
Weighted average | −18.3 | −135 | −10.6 | −76 | −10.1 | −72 | −12.9 | −91 | −11.9 | −85 |
Average | −17.2 | −126 | −11.1 | −80 | −9.6 | −68 | −13.4 | −96 | −12.9 | −93 |
Minimum | −30.9 | −239 | −22.5 | −174 | −16.4 | −123 | −27.4 | −217 | −30.9 | −239 |
Maximum | −9.1 | −67 | −4.7 | −22 | −4.1 | −26 | −6.2 | −40 | −4.7 | −22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borodulina, G.; Tokarev, I.; Yakovlev, E. Isotope Composition of Natural Water in Lake Onega Basin. Water 2023, 15, 1855. https://doi.org/10.3390/w15101855
Borodulina G, Tokarev I, Yakovlev E. Isotope Composition of Natural Water in Lake Onega Basin. Water. 2023; 15(10):1855. https://doi.org/10.3390/w15101855
Chicago/Turabian StyleBorodulina, Galina, Igor Tokarev, and Evgeny Yakovlev. 2023. "Isotope Composition of Natural Water in Lake Onega Basin" Water 15, no. 10: 1855. https://doi.org/10.3390/w15101855
APA StyleBorodulina, G., Tokarev, I., & Yakovlev, E. (2023). Isotope Composition of Natural Water in Lake Onega Basin. Water, 15(10), 1855. https://doi.org/10.3390/w15101855