# Modeling the Groundwater Dynamics of the Celaya Valley Aquifer

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area and Regional Geology

#### 2.2. Methodology

#### 2.2.1. Hydrogeological Model

#### 2.2.2. Static Level

#### Dry Season

#### Rainy season

#### 2.2.3. Static Level Evolution

#### 2.2.4. Groundwater Balance

#### 2.2.5. Mathematical Model

#### Spatial and Temporal Discretization

#### Initial and Boundary Conditions

#### Hydrogeological Parameters

#### 2.3. Calibrations

#### 2.3.1. Stationary State Calibration

#### Dry Season

#### Rainy Season

#### 2.3.2. Calibration in Transient State

#### Dry Season

#### Rainy Season

#### 2.3.3. Validation of Results

#### 2.3.4. Sensitivity Analysis

## 3. Results

#### 3.1. Trend

#### 3.1.1. Dry Season

#### 3.1.2. Rainy Season

#### 3.2. Pumping Increase

#### 3.2.1. Dry Season

#### 3.2.2. Rainy Season

#### 3.3. Pumping Reduction

#### 3.3.1. Dry Season

#### 3.3.2. Rainy Season

#### 3.4. General Analysis of Simulation Scenarios

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bear, J.; Cheng, A.H.D. Modeling Groundwater Flow and Contaminant Transport; Springer: Dordrecht, The Netherlands, 2010; Volume 23. [Google Scholar]
- Vrba, J.; Verhagen, B.T. Groundwater for Emergency Situations: A Framework Document; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2006. [Google Scholar]
- Bundschuh, J.; César Suárez, A.M. Introduction to the Numerical Modeling of Groundwater and Geothermal Systems: Fundamentals of Mass, Energy and Solute Transport in Poroelastic Rocks; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sen, Z. Fuzzy Logic and Hydrological Modeling; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Wang, H.F.; Anderson, M.P. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Zhou, Y.; Li, W. A review of regional groundwater flow modeling. Geosci. Front.
**2011**, 2, 205–214. [Google Scholar] [CrossRef][Green Version] - Konikow, L.F. Use of Numerical Models to Simulate Groundwater Flow and Transport; US Geological Survey: Reston, VA, USA, 2005.
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Niswonger, R.G.; Panday, S.; Provost, A.M. Documentation for the MODFLOW 6 Groundwater Flow Model (No. 6-A55); US Geological Survey: Reston, VA, USA, 2017.
- Konikow, L.F.; Reilly, T.E. Seawater intrusion in the United States. In Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices; Springer: Dordrecht, The Netherlands, 1999; pp. 463–506. [Google Scholar]
- Barlow, P.M.; Harbaugh, A.W. USGS directions in MODFLOW development. Groundwater
**2006**, 44, 771–774. [Google Scholar] [CrossRef] [PubMed] - Konikow, L.F.; Goode, D.J.; Hornberger, G.Z. A Three-Dimensional Method-of-Characteristics Solute-Transport Model (MOC3D); US Department of the Interior, US Geological Survey, National Center Reston: Reston, VA, USA, 1996; Volume 96.
- Comisión Nacional del Agua. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Valle de Celaya (1115), Estado de Guanajuato [Update of the Annual Average Water Availability in the Valle de Celaya Aquifer (1115), Guanajuato State]; CONAGUA: Mexico City, Mexico, 2015. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. Estudio Hidrológico del Estado de Guanajuato [Hydrological Study of the State of Guanajuato]; INEGI: Mexico City, Mexico, 1998. [Google Scholar]
- Alaniz-Álvarez, S.A.; Nieto-Samaniego, A.F.; Reyes-Zaragoza, M.A.; Orozco-Esquivel, M.T.; Ojeda-García, A.C.; Vassallo, L.F. Estratigrafía y Deformación Extensional en la Región San Miguel de Allende-Querétaro, México. Rev. Mex. Cienc. Geol.
**2001**, 18, 129–148. [Google Scholar] - Pinder, G.F. Groundwater Modeling Using Geographical Information Systems; John Wiley and Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Sánchez, D.H.; Navarro-Gómez, C.J.; Rentería, M.; Rose, J.F.; Sánchez-Navarro, J.R. Evolution of the groundwater system in the Chihuahua-Sacramento aquifer due to climatic and anthropogenic factors. J. Water Clim. Chang.
**2021**, 13, 645–663. [Google Scholar] [CrossRef] - Potentiometric Surface Mapping (1:48000) Overview. (2021b, November 18). Water. Available online: https://www.in.gov/dnr/water/ground-water-wells/assessment-maps-and-publications/potentiometric-surface-mapping-148000/potentiometric-surface-mapping-148000-overview/ (accessed on 10 January 2022).
- Lesser y Asociados, S.A.D.C.V. Sinopsis: Seguimiento del Estudio hidrogeológico y Modelo Matemático del Acuífero del Valle de Celaya, Gto. Comisión Estatal del Agua en Guanajuato. 2002. Available online: http://seia.guanajuato.gob.mx/ (accessed on 15 December 2021).
- Haitjema, H.M. Analytic Element Modeling of Groundwater Flow; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- C.L.I.C.O.M. (2003, 1 junio). CLICOM Database. Weather Data Management Software System. Available online: http://clicom-mex.cicese.mx/mapa.html (accessed on 8 January 2020).
- National Centers for Environmental Prediction (NCEP). Global Weather Data for SWAT. Available online: https://globalweather.tamu.edu/?fbclid=IwAR1MNUeXdiWLn3ihplAzthmTZve-EnedMnjcU4sj0jJMVzUngx1wypGdyMs (accessed on 8 January 2020).
- Mexican Institute of Water Technology. National Bank of Surface Waters BANDAS. Available online: http://hidrosuperf.imta.mx/bandas/ (accessed on 8 January 2020).
- Campos-Aranda, D.F. N Number identification through the TUH method, in fifteen rural watersheds of two geographical zones in Mexico. Agrociencia
**2009**, 43, 763–775. [Google Scholar] - Sistema Nacional de Información del Agua SINA. Available online: http://sina.conagua.gob.mx/sina/tema.php?tema=distritosriego&ver=mapa (accessed on 8 January 2020).
- Grossmann, C.; Roos, H.G.; Stynes, M. Numerical Treatment of Partial Differential Equations; Springer: Berlin, Germany, 2007; Volume 154. [Google Scholar]
- Igboekwe, M.U.; Achi, N.J. Finite difference method of modelling groundwater flow. J. Water Resour. Prot.
**2011**, 3, 192–198. [Google Scholar] [CrossRef][Green Version] - Bear, J. Hydraulics of Groundwater; McGraw-Hill International Book Company: Mineola, New York, USA, 2012. [Google Scholar]
- Fitts, C.R. Groundwater Science; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater, (No. 629.1 F7); Cathy Brenn/Kim McNeily: Englewood, NJ, USA, 1979. [Google Scholar]
- Mencio, A.; Galán, M.; Boix, D.; Mas-Pla, J. Analysis of stream-aquifer relationships: A comparison between mass balance and Darcy’s law approaches. J. Hydrol.
**2014**, 517, 157–172. [Google Scholar] [CrossRef] - Bundschuh, J.; Suérez, M.C.A. Introduction to the Numerical Modeling of Groundwater and Geothermal Systems; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Mehl, S.W.; Hill, M.C. MODFLOW-2005, The US Geological Survey Modular Ground-Water Model-Documentation of Shared Node Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package (No. 6-A12); US Geological Survey: Reston, VA USA, 2006.
- López-Alvis, J.; Carrera-Hernández, J.J.; Levresse, G.; Nieto-Samaniego, Á.F. Assessment of groundwater depletion caused by excessive extraction through groundwater flow modeling: The Celaya aquifer in central Mexico. Environ. Earth Sci.
**2019**, 78, 482. [Google Scholar] [CrossRef] - Shoemaker, W.B.; Kuniansky, E.L.; Birk, S.; Bauer, S.; Swain, E.D. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005; US Geological Survey: Reston, VA, USA, 2008.
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hill, M.C.; Tiedeman, C.R. Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Doherty, J. Ground water model calibration using pilot points and regularization. Groundwater
**2003**, 41, 170–177. [Google Scholar] [CrossRef] [PubMed] - Abdulla, F.; Al-Khatib, M.; Al-Ghazzawi, Z. Development of groundwater modeling for the Azraq Basin, Jordan. Environ. Geol.
**2000**, 40, 11–18. [Google Scholar] [CrossRef] - Comisión Estatal de Agua y Saneamiento de Guanajuato. Sistema de Información de los Organismos Opertadores de Agua, (No. 7). Aqua Forum. 1997. Available online: https://agua.org.mx/organismos-operadores/ (accessed on 22 February 2020).
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied groundwater modeling: Simulation on flow and advective transport. J. Hydrol.
**1992**, 140, 393–395. [Google Scholar] - Surinaidu, L.; Rao, V.G.; Rao, N.S.; Srinu, S. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resour. Ind.
**2014**, 7, 49–65. [Google Scholar] [CrossRef][Green Version] - Kashaigili, J.J.; Mashauri, D.A.; Abdo, G. Groundwater management by using mathematical modeling: Case of the Makutupora groundwater basin in dodoma Tanzania. Botsw. J. Technol.
**2003**, 12, 19–24. [Google Scholar] [CrossRef] - Waterloo Hydrogeologic. Visual MODFLOW User’s Manual. Available online: https://www.waterloohydrogeologic.com/ (accessed on 10 December 2019).
- ASTM Publication D5880-95; Standard Guide for Subsurface Flow and Transport Modeling. ASTM: West Conshohocken, PA, USA, 1995; p. 5. Available online: https://www.astm.org/d5880-95r06.html (accessed on 10 December 2022).
- Huang, Y.C.; Yeh, H.D. The use of sensitivity analysis in on-line aquifer parameter estimation. J. Hydrol.
**2007**, 335, 406–418. [Google Scholar] [CrossRef]

**Figure 1.**Location of the Celaya Valley aquifer, Guanajuato, Mexico. Topographic map of the study area with the location of the piezometric wells. Coordinate system: WGS 84/UTM Zone 14 N.

**Figure 3.**Hydrogeological model of the CV aquifer, Profile A-A’ corresponds to a geological section from South to North and Profile B-B’ corresponds to a geological section from West to East.

**Figure 4.**Dry season of 2015. (

**a**) Distribution of static level depth lines. (

**b**) Distribution of static level elevation lines.

**Figure 5.**Dry season of 2019. (

**a**) Distribution of static level depth lines. (

**b**) Distribution of static level elevation lines.

**Figure 6.**Rainy season of 2010. (

**a**) Distribution of static level depth lines. (

**b**) Distribution of static level elevation lines.

**Figure 7.**Rainy season of 2015. (

**a**) Distribution of static level depth lines. (

**b**) Distribution of static level elevation lines.

**Figure 8.**Static level evolution. (

**a**) Analysis period of 2015 to 2019 in dry season. (

**b**) Analysis period of 2010 to 2015 in rainy season.

**Figure 10.**Dry season. (

**a**) Hydraulic head in steady state, where the highest head is represented by red and the lowest head by dark blue. (

**b**) Comparison between the equipotential lines of the piezometric levels calculated by the model (pink color) and those measured in the field (green color).

**Figure 11.**Rainy season. (

**a**) Hydraulic head in steady state, where the highest head is represented by red and the lowest head by dark blue. (

**b**) Comparison between the equipotential lines of the piezometric levels calculated by the model (pink color) and those measured in the field (green color).

**Figure 12.**Dry season. (

**a**) Values of hydraulic head in transitory state in the time interval 2015–2019. (

**b**) Comparison between static level elevation equipotential lines calculated by the model (pink color) and those measured in the field (green color).

**Figure 14.**Dry season. (

**a**) Values of hydraulic head in transitory state in the time interval 2010–2015. (

**b**) Comparison between static level elevation equipotential lines calculated by the model (pink color) and those measured in the field (green color).

**Figure 16.**Elevation of the hydraulic head of the year 2030 through the trend scenario in the dry season.

**Figure 18.**Elevation of the hydraulic head of the year 2030 through the trend scenario in the rainy season.

**Figure 19.**Elevation of the hydraulic head of the year 2030 through the pumping increase scenario in the dry season.

**Figure 21.**Elevation of the hydraulic head of the year 2030 through the pumping increase scenario in the rainy season.

**Figure 22.**Elevation of the hydraulic head of the year 2030 through the pumping reduction scenario in the dry season.

**Figure 24.**Elevation of the hydraulic head of the year 2030 through the pumping reduction scenario in the rainy season.

**Table 1.**Variables for calculating the groundwater balance in the Valle de Celaya aquifer in the dry season.

Natural recharge by rain | Rv | mm${}^{3}$/year | 161.0 |

Horizontal inputs | Eh | mm${}^{3}$/year | 175.3 |

TOTAL NATURAL RECHARGE | mm${}^{3}$/year | 336.3 | |

Return for public-urban use | Rv | mm${}^{3}$/year | 5.7 |

Return by irrigation (groundwater) | Ev | mm${}^{3}$/year | 82.1 |

Return by irrigation (surface water and waste) | Rv | mm${}^{3}$/year | 20.2 |

TOTAL RETURN | mm${}^{3}$/year | 108 | |

Recharge by river (conduction losses) | mm${}^{3}$/year | 20.7 | |

Recharge by waterway (conduction losses) | mm${}^{3}$/year | 3.3 | |

TOTAL RECHARGE | Inputs | mm${}^{3}$/year | 468.3 |

Agricultural | mm${}^{3}$/year | 462.5 | |

Public-urban | mm${}^{3}$/year | 71.1 | |

Industrial | mm${}^{3}$/year | 26.7 | |

Others | mm${}^{3}$/year | 20.0 | |

TOTAL GROSS EXTRACTION | mm${}^{3}$/year | 580.3 | |

Evapotranspiration | mm${}^{3}$/year | 58.6 | |

TOTAL DISCHARGE | Outputs | mm${}^{3}$/year | 638.9 |

INPUTS—OUTPUTS | mm${}^{3}$/year | −170.6 |

**Table 2.**Variables for calculating the groundwater balance in the Valle de Celaya aquifer in the rainy season.

Natural recharge by rain | Rv | mm${}^{3}$/year | 178.3 |

Horizontal inputs | Eh | mm${}^{3}$/year | 201.5 |

TOTAL NATURAL RECHARGE | mm${}^{3}$/year | 379.8 | |

Return for public–urban use | Rv | mm${}^{3}$/year | 5.7 |

Return by irrigation (groundwater) | Ev | mm${}^{3}$/year | 82.1 |

Return by irrigation (surface water and waste) | Rv | mm${}^{3}$/year | 20.2 |

TOTAL RETURN | mm${}^{3}$/year | 108 | |

Recharge by river (conduction losses) | mm${}^{3}$/year | 25.1 | |

Recharge by waterway (conduction losses) | mm${}^{3}$/year | 4.2 | |

TOTAL RECHARGE | Inputs | mm${}^{3}$/year | 517.1 |

Agricultural | mm${}^{3}$/year | 462.5 | |

Public–urban | mm${}^{3}$/year | 71.1 | |

Industrial | mm${}^{3}$/year | 26.7 | |

Others | mm${}^{3}$/year | 20.0 | |

TOTAL GROSS EXTRACTION | mm${}^{3}$/year | 580.3 | |

Evapotranspiration | mm${}^{3}$/year | 55.1 | |

TOTAL DISCHARGE | Outputs | mm${}^{3}$/year | 635.4 |

INPUTS–OUTPUTS | mm${}^{3}$/year | −118.3 |

PARAMETER | CALCULATED [m${}^{3}$/Year] | SIMULATED [m${}^{3}$/Year] | ERROR % |
---|---|---|---|

RECHARGE | 736,986.30 | 732,501.44 | 0.61 |

RIVER LEAKAGE | 56,712.33 | 56,971.26 | 0.46 |

GHB | 480,273.97 | 484,238.19 | 0.83 |

DRAINS | 9041.10 | 9450.52 | 4.53 |

ET | 160,547.95 | 162,032.87 | 0.92 |

PARAMETER | CALCULATED [m${}^{3}$/Year] | SIMULATED [m${}^{3}$/Year] | ERROR % |
---|---|---|---|

RECHARGE | 784,383.56 | 776,879.24 | 0.96 |

RIVER LEAKAGE | 68,767.12 | 69,445.22 | 0.99 |

GHB | 552,054.79 | 547,311.89 | 0.86 |

DRAINS | 11,506.85 | 10,779.52 | 6.32 |

ET | 150,958.90 | 152,132.87 | 0.78 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rubio-Arellano, A.B.; Ramos-Leal, J.A.; Vázquez-Báez, V.M.; Rodriguez Mora, J.I. Modeling the Groundwater Dynamics of the Celaya Valley Aquifer. *Water* **2023**, *15*, 1.
https://doi.org/10.3390/w15010001

**AMA Style**

Rubio-Arellano AB, Ramos-Leal JA, Vázquez-Báez VM, Rodriguez Mora JI. Modeling the Groundwater Dynamics of the Celaya Valley Aquifer. *Water*. 2023; 15(1):1.
https://doi.org/10.3390/w15010001

**Chicago/Turabian Style**

Rubio-Arellano, Ana B., Jose A. Ramos-Leal, Víctor M. Vázquez-Báez, and José I. Rodriguez Mora. 2023. "Modeling the Groundwater Dynamics of the Celaya Valley Aquifer" *Water* 15, no. 1: 1.
https://doi.org/10.3390/w15010001