Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ram, S.A.; Irfan, Z.B. Application of System Thinking Causal Loop Modelling in Understanding Water Crisis in India: A Case for Sustainable Integrated Water Resources Management across Sectors. HydroResearch 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, J.; Ou, X.; Liu, X.; Song, Y.; Tian, C.; Rong, W.; Shi, Z.; Dang, Z.; Lin, Z. Effective Extraction of Cr (VI) from Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species. Environ. Sci. Technol. 2018, 52, 13336–13342. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, J.; Liu, J.; Qu, X.; Ma, H. Advances in Continuous Flow Aerobic Granular Sludge: A Review. Process Saf. Environ. Prot. 2022, 163, 27–35. [Google Scholar] [CrossRef]
- Li, T.; Su, T.; Wang, J.; Zhu, S.; Zhang, Y.; Geng, Z.; Wang, X.; Gao, Y. Simultaneous Removal of Sulfate and Nitrate from Real High-Salt Flue Gas Wastewater Concentrate via a Waste Heat Crystallization Route. J. Clean. Prod. 2022, 382, 135262. [Google Scholar] [CrossRef]
- Shen, W.; Mukherjee, D.; Koirala, N.; Hu, G.; Lee, K.; Zhao, M.; Li, J. Microbubble and Nanobubble-Based Gas Flotation for Oily Wastewater Treatment: A Review. Environ. Rev. 2022, 30, 359–379. [Google Scholar] [CrossRef]
- Yin, X.; He, Y.; Li, H.; Ma, X.; Zhou, L.; He, T.; Li, S. One-Step in-Situ Fabrication of Carbon Nanotube/Stainless Steel Mesh Membrane with Excellent Anti-Fouling Properties for Effective Gravity-Driven Filtration of Oil-in-Water Emulsions. J. Colloid Interface Sci. 2021, 592, 87–94. [Google Scholar] [CrossRef]
- Liu, J.; Qu, X.; Zhang, C.; Dong, W.; Fu, C.; Wang, J.; Zhang, Q. High-Yield Aqueous Synthesis of Partial-Oxidized Black Phosphorus as Layered Nanodot Photocatalysts for Efficient Visible-Light Driven Degradation of Emerging Organic Contaminants. J. Clean. Prod. 2022, 377, 134228. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of Coagulation/Flocculation in Oily Wastewater Treatment: A Review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Khalifa, O.; Banat, F.; Srinivasakannan, C.; AlMarzooqi, F.; Hasan, S.W. Ozonation-Assisted Electro-Membrane Hybrid Reactor for Oily Wastewater Treatment: A Methodological Approach and Synergy Effects. J. Clean. Prod. 2021, 289, 125764. [Google Scholar] [CrossRef]
- Hamta, A.; Ashtiani, F.Z.; Karimi, M.; Sadeghi, Y.; MoayedFard, S.; Ghorabi, S. Copolymer Membrane Fabrication for Highly Efficient Oil-in-Water Emulsion Separation. Chem. Eng. Technol. 2021, 44, 1321–1326. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. The Impact of Operational Parameters on Polypropylene Membrane Performance during the Separation of Oily Saline Wastewaters by the Membrane Distillation Process. Membranes 2022, 12, 351. [Google Scholar] [CrossRef] [PubMed]
- Al-Anzi, B.S.; Siang, O.C. Recent Developments of Carbon Based Nanomaterials and Membranes for Oily Wastewater Treatment. RSC Adv. 2017, 7, 20981–20994. [Google Scholar] [CrossRef]
- Ikhsan, S.N.W.; Yusof, N.; Aziz, F.; Ismail, A.F.; Jaafar, J.; Salleh, W.N.W.; Misdan, N. Superwetting Materials for Hydrophilic-Oleophobic Membrane in Oily Wastewater Treatment. J. Environ. Manag. 2021, 290, 112565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hao, T. Insights into the Role of Concentration Polarization on the Membrane Fouling and Cleaning during the Aerobic Granular Sludge Filtration Process. Sci. Total Environ. 2022, 813, 151871. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Membrane Distillation of Saline Water Contaminated with Oil and Surfactants. Membranes 2021, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, N.; Ding, S.; Wang, X.; Li, H.; Zhang, Y.; Feng, X.; Lu, J.; Ding, J. Nanofiltration Desalination of Reverse Osmosis Concentrate Pretreated by Advanced Oxidation with Ultrafiltration: Response Surface Optimization and Exploration of Membrane Fouling. J. Environ. Chem. Eng. 2021, 9, 106340. [Google Scholar] [CrossRef]
- Hamta, A.; Ashtiani, F.Z.; Karimi, M.; Moayedfard, S. Asymmetric Block Copolymer Membrane Fabrication Mechanism through Self-Assembly and Non-Solvent Induced Phase Separation (SNIPS) Process. Sci. Rep. 2022, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, R.; Zhang, L.; Guan, X. Molecular Insights into the Adsorption of Chloride Ions in Calcium Silicate Hydrate Gels: The Synergistic Effect of Calcium to Silicon Ratio and Sulfate Ion. Microporous Mesoporous Mater. 2022, 345, 112248. [Google Scholar] [CrossRef]
- Wei, Y.; Ding, A.; Chen, Y. Removal of Refractory Dyes by a Novel Chlorine-Free Coagulant of Polyferric-Silicate-Acetate (PFSA): Characterization and Performance Evaluation. J. Environ. Chem. Eng. 2022, 10, 108524. [Google Scholar] [CrossRef]
- Hamta, A.; Mohammadi, A.; Dehghani, M.R.; Feyzi, F. Liquid–Liquid Equilibrium and Thermodynamic Modeling of Aqueous Two-Phase System Containing Polypropylene Glycol and NaClO4 at T =(288.15 and 298.15) K. J. Solut. Chem. 2018, 47, 1–25. [Google Scholar] [CrossRef]
- Ge, D.; Yuan, H.; Xiao, J.; Zhu, N. Insight into the Enhanced Sludge Dewaterability by Tannic Acid Conditioning and PH Regulation. Sci. Total Environ. 2019, 679, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yang, G.; Zhang, J.; Gray, S.; Xie, Z. Dual-Layer Membranes with a Thin Film Hydrophilic MOF/PVA Nanocomposite for Enhanced Antiwetting Property in Membrane Distillation. Desalination 2021, 518, 115268. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, T.; Cen, M.; Wang, J.; Zhao, X.; Zeng, C.; Zhou, Y.; Fan, Y.; Liu, Y.; Zhao, Z. Research Progress on Lunar and Martian Concrete. Constr. Build. Mater. 2022, 343, 128117. [Google Scholar] [CrossRef]
- Hamta, A.; Dehghani, M.R. Application of Polyethylene Glycol Based Aqueous Two-Phase Systems for Extraction of Heavy Metals. J. Mol. Liq. 2017, 231, 20–24. [Google Scholar] [CrossRef]
- Hamta, A.; Dehghani, M.R.; Gholami, M. Novel Experimental Data on Aqueous Two–Phase System Containing PEG–6000 and Na2CO3 at T =(293.15, 303.15 and 313.15) K. J. Mol. Liq. 2017, 241, 144–149. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent Development in Modification of Polysulfone Membrane for Water Treatment Application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, S.; Li, Z.; An, X.; Zhou, L.; Zhang, Y.; Shiang, F.Q. Progress of Applied Research on TiO2 Photocatalysis-Membrane Separation Coupling Technology in Water and Wastewater Treatments. Chin. Sci. Bull. 2010, 55, 1345–1353. [Google Scholar] [CrossRef]
- Moghadassi, A.R.; Rajabi, Z.; Hosseini, S.M.; Mohammadi, M. Preparation and Characterization of (PVC-Blend-SBR) Mixed Matrix Gas Separation Membrane Filled with Zeolite. Arab. J. Sci. Eng. 2014, 39, 605–614. [Google Scholar] [CrossRef]
- Hamta, A.; Zokaee Ashtiani, F.; Karimi, M.; Safikhani, A. Manipulating of Polyacrylonitrile Membrane Porosity via SiO2 and TiO2 Nanoparticles: Thermodynamic and Experimental Point of View. Polym. Adv. Technol. 2020, 32, 872–885. [Google Scholar] [CrossRef]
- Itzhak, T.; Segev-Mark, N.; Simon, A.; Abetz, V.; Ramon, G.Z.; Segal-Peretz, T. Atomic Layer Deposition for Gradient Surface Modification and Controlled Hydrophilization of Ultrafiltration Polymer Membranes. ACS Appl. Mater. Interfaces 2021, 13, 15591–15600. [Google Scholar] [CrossRef]
- Ohno, S.; Nakata, I.; Nagumo, R.; Akamatsu, K.; Wang, X.; Nakao, S. Development of Low-Fouling PVDF Membranes Blended with Poly (2-Methoxyethyl Acrylate) via NIPS Process. Sep. Purif. Technol. 2021, 276, 119331. [Google Scholar] [CrossRef]
- Dong, P.; Zhang, Y.; Zhu, S.; Nie, Z.; Ma, H.; Liu, Q.; Li, J. First-Principles Study on the Adsorption Characteristics of Corrosive Species on Passive Film TiO2 in a NaCl Solution Containing H2S and CO2. Metals 2022, 12, 1160. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Susanto, H.; Aryanti, N.; Rokhati, N.; Widiasa, I.N.; Al-Aziz, H.; Utomo, D.P.; Masithoh, D.; Kumoro, A.C. Preparation and Characterization of Photocatalytic PSf-TiO2/GO Nanohybrid Membrane for the Degradation of Organic Contaminants in Natural Rubber Wastewater. J. Environ. Chem. Eng. 2021, 9, 105066. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Application of Capillary Polypropylene Membranes for Microfiltration of Oily Wastewaters: Experiments and Modeling. Fibers 2021, 9, 35. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Application of Ultrafiltration Ceramic Membrane for Separation of Oily Wastewater Generated by Maritime Transportation. Sep. Purif. Technol. 2021, 261, 118259. [Google Scholar] [CrossRef]
- Uri-Carreño, N.; Nielsen, P.H.; Gernaey, K.V.; Flores-Alsina, X. Long-Term Operation Assessment of a Full-Scale Membrane-Aerated Biofilm Reactor under Nordic Conditions. Sci. Total Environ. 2021, 779, 146366. [Google Scholar] [CrossRef]
- Hussein, T.K.; Jasim, N.A. A Comparison Study between Chemical Coagulation and Electro-Coagulation Processes for the Treatment of Wastewater Containing Reactive Blue Dye. Mater. Today Proc. 2021, 42, 1946–1950. [Google Scholar] [CrossRef]
- Inam, M.A.; Khan, R.; Inam, M.W.; Yeom, I.T. Kinetic and Isothermal Sorption of Antimony Oxyanions onto Iron Hydroxide during Water Treatment by Coagulation Process. J. Water Process Eng. 2021, 41, 102050. [Google Scholar] [CrossRef]
- Lee, H.W.; Lu, Y.; Zhang, Y.; Fu, C.; Huang, D. Physicochemical and Functional Properties of Red Lentil Protein Isolates from Three Origins at Different PH. Food Chem. 2021, 358, 129749. [Google Scholar] [CrossRef]
- Rohyami, Y.; Aprianto, T. Validation Method on Determination of Chemical Oxygen Demand Using Indirect UV-Vis Spectrometry. In Proceedings of the Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2021; Volume 1162, pp. 101–108. [Google Scholar]
- González-Calderón, J.A.; Peña-Juárez, M.; Zarraga, R.; Contreras-López, D.; Vallejo-Montesinos, J. The Role of Alkoxysilanes Functional Groups for Surface Modification of TiO2 Nanoparticles on Non-Isothermal Crystallization of Isotactic Polypropylene Composites. Rev. Mex. Ing. Quim. 2021, 20, 435–452. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y.P.; Zhang, P.; Zhang, Z.C.; Xu, X. Fabrication of an Antifouling GO-TiO2/PES Ultrafiltration Membrane. J. Appl. Polym. Sci. 2021, 138, 51165. [Google Scholar] [CrossRef]
- Shu, Z.; Lü, Y.; Huang, J.; Zhang, W. Treatment of Compost Leachate by the Combination of Coagulation and Membrane Process. Chin. J. Chem. Eng. 2016, 24, 1369–1374. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Cross-Flow Ultrafiltration of Stable Oil-in-Water Emulsion Using Polysulfone Membranes. Chem. Eng. J. 2010, 165, 447–456. [Google Scholar] [CrossRef]
- Yao, C.W.; Burford, R.P.; Fane, A.G.; Fell, C.J.D. Effect of Coagulation Conditions on Structure and Properties of Membranes from Aliphatic Polyamides. J. Memb. Sci. 1988, 38, 113–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Geng, J.; Wang, X.; Gu, X.; Gao, S. Tetracycline Adsorption on Kaolinite: PH, Metal Cations and Humic Acid Effects. Ecotoxicology 2011, 20, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel-Hamid, S.M.S.; Drioli, E. A Review of Polymeric Nanocomposite Membranes for Water Purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Mohammadi, T.; Kazemimoghadam, M.; Saadabadi, M. Modeling of Membrane Fouling and Flux Decline in Reverse Osmosis during Separation of Oil in Water Emulsions. Desalination 2003, 157, 369–375. [Google Scholar] [CrossRef]
- Ezzati, A.; Gorouhi, E.; Mohammadi, T. Separation of Water in Oil Emulsions Using Microfiltration. Desalination 2005, 185, 371–382. [Google Scholar] [CrossRef]
- Mohammadi, T.; Kohpeyma, A.; Sadrzadeh, M. Mathematical Modeling of Flux Decline in Ultrafiltration. Desalination 2005, 184, 367–375. [Google Scholar] [CrossRef]
- Jiang, H.; Zahmatkesh, S.; Yang, J.; Wang, H.; Wang, C. Ultrasound-enhanced catalytic degradation of simulated dye wastewater using waste printed circuit boards: Catalytic performance and artificial neuron network-based simulation. Environ. Monit. Assess. 2023, 195, 1–12. [Google Scholar] [CrossRef]
- Sonawane, C.; Alrubaie, A.; Panchal, H.; Chamkha, A.; Jaber, M.; Oza, A.; Zahmatkesh, S.; Burduhos-Nergis, D.; Burduhos-Nergis, D.P. Investigation on the Impact of Different Absorber Materials in Solar Still Using CFD Simulation—Economic and Environmental Analysis. Water 2022, 14, 3031. [Google Scholar] [CrossRef]
- Sundaramurthy, S.; Bala, S.; Sharma, A.; Verma, J.; Zahmatkesh, S.; Arisutha, S.; Verma, S.; Sillanpaa, M.; Ravichandran, N.; Panneerselvam, B. Performance Evaluation of Environmentally Sustainable Precast Cement Concrete Paver Blocks Using Fly Ash and Polypropylene Fibre. Sustainability 2022, 14, 15699. [Google Scholar] [CrossRef]
- Surani, K.; Patel, S.; Alrubaie, A.; Oza, A.; Panchal, H.; Kumar, S.; Zahmatkesh, S. Performance comparison of powder mixed EDM and traditional EDM on TZM-molybdenum super alloy using response surface methodology. Int. J. Interact. Des. Manuf. 2022, 1–12. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Amiri, M.; Zaferani, S.; Emami, M.; Hajiaghaei-Keshteli, M.; Albaqami, M.; Tighezza, A.; Shafahi, M.; Han, N. Machine learning modeling of polycarbonate ultrafiltration membranes at different temperatures, Al2O3 nanoparticle volumes, and water ratios. Chemosphere 2022, 313, 137424. [Google Scholar] [CrossRef] [PubMed]
- Zahmatkesh, S.; Hajiaghaei-Keshteli, M.; Bokhari, A.; Sundaramurthy, S.; Panneerselvam, B.; Rezakhani, Y. Wastewater treatment with nanomaterials for the future: A state-of-the-art review. Environ. Res. 2022, 216, 114652. [Google Scholar] [CrossRef] [PubMed]
- Zahmatkesh, S.; Klemeš, J.; Bokhari, A.; Wang, C.; Sillanpaa, M.; Amesho, K.; Vithanage, M. Various advanced wastewater treatment methods to remove microplastics and prevent transmission of SARS-CoV-2 to airborne microplastics. Int. J. Environ. Sci. Technol. 2022, 1–18. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Ni, B.-J.; Klemeš, J.; Bokhari, A.; Hajiaghaei-Keshteli, M. Carbon quantum dots-Ag nanoparticle membrane for preventing emerging contaminants in oil produced water. J. Water Process Eng. 2022, 50, 103309. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Rezakhani, Y.; Arabi, A.; Hasan, M.; Ahmad, Z.; Wang, C.; Sillanpää, M.; Al-Bahrani, M.; Ghodrati, I. An approach to removing COD and BOD based on polycarbonate mixed matrix membranes that contain hydrous manganese oxide and silver nanoparticles: A novel application of artificial neural network based simulation in MATLAB. Chemosphere 2022, 308, 136304. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Rezakhani, Y.; Chofreh, A.; Karimian, M.; Wang, C.; Ghodrati, I.; Hasan, M.; Sillanpaa, M.; Panchal, H.; Khan, R. SARS-CoV-2 removal by mix matrix membrane: A novel application of artificial neural network based simulation in MATLAB for evaluating wastewater reuse risks. Chemosphere 2023, 310, 136837. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
Iodine Number (mg/g) | 1093 mg/g |
Hardness | 88% |
Density (kg/m3) | 422 kg/m3 |
Ash (%) | 2.4% |
Humidity (%) | <9% |
pH | 7 |
Specific Surface (m2/g) | 1110 m2/g |
PFS | pH = 4 | pH = 5 | pH = 6 | pH = 7 | pH = 8 | pH = 9 | pH = 10 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | |
1 g/L | 412 | 97.1 | 394 | 98.2 | 381 | 98.3 | 591 | 91.3 | 673 | 80.8 | 1520 | 68.3 | 2913 | 55.0 |
2 g/L | 533 | 93.3 | 475 | 95.2 | 411 | 96.5 | 669 | 88.7 | 892 | 73.2 | 1737 | 56.8 | 3166 | 48.3 |
PFC | pH = 4 | pH = 5 | pH = 6 | pH = 7 | pH = 8 | pH = 9 | pH = 10 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | |
1 g/L | 1559 | 71.3 | 1174 | 75.9 | 948 | 81.3 | 766 | 84.7 | 512 | 88.3 | 319 | 93.3 | 188 | 96.1 |
2 g/L | 1945 | 65.2 | 1463 | 69.1 | 1248 | 73.9 | 988 | 79.8 | 716 | 83.2 | 533 | 88.2 | 397 | 91.7 |
Coagulant Dose | 0.05 g/L | 0.1 g/L | 0.5 g/L | 1 g/L | 1.5 g/L | 2 g/L | 3 g/L | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | COD | %R | |
PFS | 4230 | 35.1 | 3812 | 52.9 | 3122 | 69.2 | 2166 | 98.3 | 1542 | 68.3 | 1191 | 66.5 | 563 | 58.4 |
PFC | 3612 | 48.3 | 3130 | 51.6 | 2855 | 59.7 | 1888 | 81.3 | 1239 | 73.9 | 953 | 73.4 | 366 | 61.1 |
Membrane | Feed Concentration | Pressure | Flow Rate | Permeate Flux | Rejection |
---|---|---|---|---|---|
Pure PSf | 8000 ppm (pre-treated) | 3 bar | 4 L/h | 453 (L/h m2) | 95% |
8000 ppm (primary feed) | 3 bar | 4 L/h | 412 (L/h m2) | 96% | |
Modifed PSf | 8000 ppm (pre-treated) | 3 bar | 4 L/h | 563 (L/h m2) | 99% |
8000 ppm (primary feed) | 3 bar | 4 L/h | 572 (L/h m2) | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alawamleh, H.S.K.; Mousavi, S.; Ashoori, D.; Salman, H.M.; Zahmatkesh, S.; Sillanpää, M. Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles. Water 2023, 15, 145. https://doi.org/10.3390/w15010145
Alawamleh HSK, Mousavi S, Ashoori D, Salman HM, Zahmatkesh S, Sillanpää M. Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles. Water. 2023; 15(1):145. https://doi.org/10.3390/w15010145
Chicago/Turabian StyleAlawamleh, Heba Saed Kariem, Seyedsahand Mousavi, Danial Ashoori, Hayder Mahmood Salman, Sasan Zahmatkesh, and Mika Sillanpää. 2023. "Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles" Water 15, no. 1: 145. https://doi.org/10.3390/w15010145
APA StyleAlawamleh, H. S. K., Mousavi, S., Ashoori, D., Salman, H. M., Zahmatkesh, S., & Sillanpää, M. (2023). Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles. Water, 15(1), 145. https://doi.org/10.3390/w15010145