Remote Sensing-Based Agricultural Water Accounting for the North Jordan Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Climatic Data
2.2.2. Land-Use/Cover Mapping
2.2.3. Water Inflows to the NJV
2.2.4. Water Outflows from the NJV
2.2.5. WA+ Sheets and Performance Indicators
2.2.6. Mapping Surface Water from the Side Wadis
3. Results
3.1. Land- and Water-Use Categories
3.2. Water Inflows and Crop Water Requirements
3.3. Water Outflows
3.4. Irrigation Water Demand
3.5. WA+ Sheets and Performance Indicators
3.6. Mapping Surface Water from Side Wadis
4. Discussions
4.1. WaPOR Data Assessment
4.2. Remote-Sensing Data and Water Accounting
4.3. Implications for Solving Water Deficiency
5. Conclusions
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Bakri, J.T.; Shawash, S.; Ghanim, A.; Abdelkhaleq, R. Geospatial Techniques for Improved Water Management in Jordan. Water 2016, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Deoli, V.; Kumar, D.; Kumar, M.; Kuriqi, A.; Elbeltagi, A. Water spread mapping of multiple lakes using remote sensing and satellite data. Arab. J. Geosci. 2021, 14, 2213. [Google Scholar] [CrossRef]
- Hysa, A.; Spalevic, V.; Dudic, B.; Roșca, S.; Kuriqi, A.; Bilașco, Ș.; Sestras, P. Utilizing the Available Open-Source Remotely Sensed Data in Assessing the Wildfire Ignition and Spread Capacities of Vegetated Surfaces in Romania. Remote Sens. 2021, 13, 2737. [Google Scholar] [CrossRef]
- Batchelor, C.; Hoogeveen, J.; Faurès, J.M.; Peiser, L. Water Accounting and Auditing: A Sourcebook (Revised Edition), Land and Water Division; FAO Water Reports-43; FAO: Rome, Italy, 2017; p. 232. [Google Scholar]
- Dost, R.; Obando, E.B.; Bastiaanssen, W.; Hoogeveen, J. Water Accounting through Remote Sensing. A Background Report on Water Accounting Plus (WA+) in the Awash River Basin, Land and Water Division; FAO: Rome, Italy, 2013; p. 56. [Google Scholar]
- Molden, D.; Sakthivadivel, R. Water accounting to assess use and productivity of water. Int. J. Water Res. Dev. 1999, 15, 55–71. [Google Scholar] [CrossRef]
- Basukala, A.K.; Oldenburg, C.; Schellberg, J.; Sultanov, M.; Dubovyk, O. Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches. Eur. J. Remote Sens. 2017, 50, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Rubio, J.; Calera, A.; Arellano, I.; Belmonte, M.; Fraile, L.; Ortega, T.; Bravo, R.; González-Piqueras, J. Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale. Remote Sens. 2020, 12, 3187. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2015; p. 658. [Google Scholar]
- Bolstad, P. GIS Fundamentals: A First Text on Geographic Information Systems, 6th ed.; Eider Press: White Bear Lake, MN, USA, 2019; p. 764. [Google Scholar]
- Serbina, L.; Miller, H.M. Landsat and Water—Case Studies of the Uses and Benefits of Landsat Imagery in Water Resources; U.S. Geological Survey Open-File Report. 2014–1108; U.S. Geological Survey: Reston, VA, USA, 2014; p. 61.
- ESA (European Space Agency). Sentinel-2 Mission, ESA. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 2 March 2022).
- Karimi, P.; Bastiaanssen, W.G.M.; Molden, D. Water accounting plus (WA+)—A water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 2013, 17, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.A.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998; Available online: http://www.fao.org/3/X0490E/x0490e00.htm (accessed on 10 March 2022).
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.P.; Cammalleri, C.; D’urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 2012, 48, W11512. [Google Scholar] [CrossRef] [Green Version]
- The FAO Portal to Monitor Water Productivity through Open Access of Remotely Sensed Derived Data. Available online: https://wapor.apps.fao.org/catalog/WAPOR_2/2 (accessed on 30 January 2022).
- FAO. WaPOR Database Methodology: Version 2 Release; FAO: Rome, Italy, 2020; p. 90. [Google Scholar] [CrossRef]
- Hlavaty, H. Water Management Initiative: Review of Water Scarcity Ranking Methodologies. A Report Prepared for Tetra Tech; USAID Water Management Initiative (WMI): Amman, Jordan, 2018. [Google Scholar]
- Al-Bakri, J.T.; Salahat, M.; Suleiman, A.; Suifan, M.; Hamdan, M.R.; Khresat, S.; Kandakji, T. Impact of Climate and Land Use Changes on Water and Food Security in Jordan: Implications for Transcending “The Tragedy of the Commons”. Sustainability 2013, 5, 724–748. [Google Scholar] [CrossRef] [Green Version]
- Al-Bakri, J.; Farhan, I.; Al-Qinna, M.; Al-Karablieh, E.; Bergouli, K.; McDonnell, R. Assessment of Climate Changes and Their Impact on Barley Yield in Mediterranean Environment Using NEX-GDDP Downscaled GCMs and DSSAT. Earth Syst. Environ. 2021, 5, 751–766. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Gorelick, S. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow. Sci. Adv. 2017, 3, e1700581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earth Observation Technologies for Irrigation in Mediterranean Environments (EO-TIME). Available online: https://eotime.it/ (accessed on 12 February 2022).
- Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.; Cheema, M. Basin-wide water accounting based on remote sensing data: An application for the Indus Basin. Hydrol. Earth Syst. Sci. 2013, 17, 2473–2486. [Google Scholar] [CrossRef] [Green Version]
- Karimi, P.; Bastiaanssen, W.G.M.; Sood, A.; Hoogeveen, J.; Peiser, L.; Bastidas-Obando, E.; Dost, R.J. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 2: Reliability of water accounting results for policy decisions in the Awash basin. Hydrol. Earth Syst. Sci. 2015, 19, 533–550. [Google Scholar] [CrossRef] [Green Version]
- Sheets Generator. Available online: https://www.wateraccounting.org/sheets.html (accessed on 2 April 2022).
- FAO. WaPOR V2 Quality Assessment—Technical Report on the Data Quality of the WaPOR FAO Database Version 2; FAO: Rome, Italy, 2020; p. 89. [Google Scholar] [CrossRef]
- FAO and IHE Delft. Water Accounting in the Jordan River Basin; FAO WaPOR Water Accounting Reports; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Al-Bakri, J.T. Soils of Jordan. In Proceedings of the Status of Mediterranean Soil Resources: Actions Needed to Support Their Sustainable Use, Mediterranean Conference Proceedings, Tunis, Tunisia, 26–31 May 2007; MEDCOASTLAND Publication: Bari, Italy, 2008. ISBN 2-85352-371-3. [Google Scholar]
- Tabieh, M.; Al-Karablieh, E.; Salman, A.; Al-Qudah, H.; Al-Rimawi, A.; Qtaishat, T. Farmers’ Ability to Pay for Irrigation Water in the Jordan Valley. J. Water Resour. Prot. 2015, 7, 1157–1173. [Google Scholar] [CrossRef] [Green Version]
- WMI (Water Management Initiative). Report on the Determination of KAC Water Losses and Recommended Solutions for Improvements; Situational Assessment; Water Management Initiative: Amman, Jordan, 2018. Available online: https://pdf.usaid.gov/pdf_docs/PA00X7SP.pdf (accessed on 10 March 2022).
- GIZ (German Society for International Cooperation). Assessment of Surface Water Production, Conveyance and Use in All Sectors in Jordan, Final Report; Third National Water Master Plan (NWMP-3); Volume B—Water Resources, ANNEX B.1.; GIZ: Amman, Jordan, 2021. [Google Scholar]
- Bani Hani, N.M.; Shatanawi, M.R. Effect of Sustained Deficit Irrigation on Evapotranspiration and Stem Water Potential of Navel Oranges in Jordan Valley. Dirasat Agric. Sci. 2013, 39, 38–50. [Google Scholar]
- MWI (Ministry of Water and Irrigation, Jordan). Water Budget for Year 2019; Department of Policies and Strategic Planning, Ministry of Water and Irrigation: Amman, Jordan, 2019.
- Taani, R. Development of a National Water Information System-Jordan, A Data Management Report on Development, Installation, Testing and Commissioning of the MWI-WIS; EU-ENPI Project 2015/366-808; MWI: Amman, Jordan, 2017. [Google Scholar]
- Abu Rumman, G. Characterization of the Hydrological Changes of Jordan River Side Wadis Tributaries Using Remote Sensing and GIS. Ph.D. Thesis, The University of Jordan, Amman, Jordan, 2007. [Google Scholar]
- Assaf, A.S. Hydrological and Hydrochemical Study of Wadi El-Arab Catchment Area/Yarmouk Basin. Unpublished Ph.D. Thesis, The University of Jordan, Amman, Jordan, 2004. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- FAO. Rapid Water Accounting: Jordan. Food and Agriculture Organization-UN. 2021. Available online: https://www.fao.org/publications/card/en/c/CB2436EN (accessed on 5 April 2022).
- Saidan, M.N.; Al-Addous, M.; Al-Weshah, R.A.; Obada, I.; Alkasrawi, M.; Barbana, N. Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy. Water 2020, 12, 1276. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.; Huang, W.-R.; Liu, P.-Y.; Li, X. Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sens. 2021, 13, 254. [Google Scholar] [CrossRef]
- Trejo, F.J.P.; Barbosa, H.A.; Peñaloza-Murillo, M.A.; Moreno, M.A.; Farías, A. Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmósfera 2016, 29, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Wahyuni, S.; Sisinggih, D.; Dewi, I.A.G. Validation of Climate Hazard Group InfraRed Precipitation with Station (CHIRPS) Data in Wonorejo Reservoir, Indonesia. In Proceedings of the 4th International Conference of Water Resources Development and Environmental Protection (ICWRDEP 2021), Malang, Indonesia, 7 August 2021. [Google Scholar] [CrossRef]
- Mokhtari, S.; Sharafati, A.; Raziei, T. Validation of CHIRPS satellite-based precipitation data against the in situ observations using the Copula method: A case study of Kosar Dam basin, Iran. Acta Geophys. 2021, 70, 465–484. [Google Scholar] [CrossRef]
- Abo Romman, Z.; Al-Bakri, J.; Al Kuisi, M. Comparison of methods for filling in gaps in monthly rainfall series in arid regions. Int. J. Climatol. 2021, 41, 6674–6689. [Google Scholar] [CrossRef]
- Al-Kilani, M.R.; Rahbeh, M.; Al-Bakri, J.; Tadesse, T.; Knutson, C. Evaluation of Remotely Sensed Precipitation Estimates from the NASA POWER Project for Drought Detection over Jordan. Earth Syst. Environ. 2021, 5, 561–573. [Google Scholar] [CrossRef]
- Salehi, H.; Shamsoddini, A.; Mirlatifi, S.M.; Mirgol, B.; Nazari, M. Spatial and temporal resolution improvement of actual evapotranspiration maps using Landsat and MODIS data fusion. Front. Environ. Sci. 2021, 9, 795287. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Wang, X.; Xu, S.; Tian, W.; Tian, J.; He, C. Assessing the Effects of Spatial Scales on Regional Evapotranspiration Estimation by the SEBAL Model and Multiple Satellite Datasets: A Case Study in the Agro-Pastoral Ecotone, Northwestern China. Remote Sens. 2021, 13, 1524. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Processes 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Comair, G.F.; McKinney, D.C.; Maidment, D.R.; Espinoza, G.; Sangiredy, H.; Fayad, A.; Salas, F.R. Hydrology of the Jordan River Basin: A GIS-based system to better guide water resources management and decision making. Water Resour. Manag. 2014, 28, 933–946. [Google Scholar] [CrossRef]
- Comair, G.F.; McKinney, D.C.; Siegel, D. Hydrology of the Jordan River Basin: Watershed delineation, precipitation and evapotranspiration. Water Resour. Manag. 2012, 26, 4281–4293. [Google Scholar] [CrossRef]
- Asghar, M.N.; Khan, M.A.; Lashbrook, B.; Zumkley, T.; Lawson, S. Hotspots Assessment of Spatial Water Losses in the Off-Farm Open Channels Irrigation Supply System. Water Resour. Manag. 2011, 25, 1281–1297. [Google Scholar] [CrossRef]
- Schacht, K.; Gönster, S.; Jüschke, E.; Chen, Y.; Tarchitzky, J.; Al-Bakri, J.; Al-Karablieh, E.; Marschner, B. Evaluation of Soil Sensitivity towards the Irrigation with Treated Wastewater in the Jordan River Region. Water 2011, 3, 1092–1111. [Google Scholar] [CrossRef]
Month | Images (DD/MM) | ETo (mm) | Rainfall (mm) | Max. Temp. (°C) | Min. Temp. (°C) |
---|---|---|---|---|---|
January | 10/01 *, 26/01 | 52 | 91 | 19.8 | 9.2 |
February | 11/02, 27/02 * | 65 | 97 | 21.2 | 10.5 |
March | 15/03, 31/03 * | 70 | 72 | 22.4 | 10.5 |
April | 16/04 | 109 | 22 | 27.5 | 13.3 |
May | 02/05, 18/05 | 163 | 0 | 37.2 | 18.0 |
June | 03/06 *, 19/06 | 163 | 0 | 38.0 | 23.1 |
July | 05/07, 21/07 | 186 | 0 | 38.8 | 24.2 |
August | 06/08, 22/08 | 212 | 0 | 39.2 | 23.9 |
September | 07/09, 23/09 | 167 | 0 | 37.3 | 22.5 |
October | 09/10, 25/10 | 130 | 9 | 33.8 | 20.9 |
November | 10/11, 26/11 | 101 | 15 | 28.9 | 16.0 |
December | 12/12 *, 28/12 | 58 | 86 | 22.1 | 11.0 |
Land- and Water-Use Category | Area (ha) | % |
---|---|---|
1. Protected (conserved) land use | 25.4 | 0.2 |
2. Utilized land use | 6305.4 | 34.7 |
2.1. Open forests | 331.3 | 1.8 |
2.2. Open rangelands (shrub and grasslands, noncultivated farm units, bare soils and rocks) | 5988.9 | 32.9 |
3. Modified land use | 2041.0 | 11.2 |
3.1. Rainfed trees | 414.3 | 2.3 |
3.2. Rainfed field crops | 1626.7 | 8.9 |
4. Managed water land use | 9816.3 | 54.0 |
4.1. Irrigated trees (citrus, dates, fruit trees) | 6185.7 | 34.0 |
4.2. Irrigated vegetables—open fields | 1985.3 | 10.9 |
4.3. Irrigated vegetables—plastic houses | 60.8 | 0.3 |
4.4. Irrigated fodders and cereals | 282.4 | 1.6 |
4.5. Irrigated—mixed cropping | 113.1 | 0.6 |
4.6. Urban | 1093.2 | 6.0 |
4.7. Managed water bodies (dams and KAC) | 97.5 | 0.6 |
Total | 18,222.5 | 100.0 |
Water Inflow Source | Volume (MCM) |
---|---|
1. Precipitation inside the NJV calculated from: | |
WaPOR data (CHIRPS) | 67.5 |
Meteorological data (JMD and MWI) | 85.5 |
2. Surface–main riverstem inflow (Yarmouk River and Al-Wehdah Dam) to KAC | 124.0 |
3. Surface–tributaries inflow to KAC | 14.2 |
4. Groundwater inflow (Mukheiba wells) | 16.7 |
Total inflows to KAC from surface and groundwater | 154.9 |
5. Groundwater pumped by farmers | 0.6 |
6. Tributaries or springs inflow (directly used in irrigation) | 4.5 |
Total inflows | |
Using WaPOR precipitation data | 227.5 |
Using JMD and MWI precipitation data | 245.5 |
Water Outflow | Volume (MCM) |
---|---|
1. Evapotranspiration and interception (AETI) | 146.2 |
2. Interbasin transfer | 90.3 |
KAC—water transferred to Amman | 78.4 |
KAC—water pumped back to Wadi Al-Arab | 6.1 |
KAC—water delivered to south JV | 5.8 |
3. Runoff from rainfall inside the NJV | 3.4 |
Total outflows | 239.9 |
Indicator | Formula and Value | Implication |
---|---|---|
Resource Base | ||
1. ET fraction | = 146/(64.1 + 155) = 67% | Under exploitation of water resources (assuming water inflows are dedicated to the NJV) |
2. Stationarity index | = = −12.5/146 = −8.5% | Depletion of soil moisture and groundwater (implications: illegal access to water, uncertainty of data accuracy) |
3. Available water | = 85.8/163.6 = 52% | Water deficiency and transfer outside the NJV |
4. Basin closure | = = 146/224 = 65% | Water shortage and transfer outside the NJV |
5. Managed fraction | = = 112.1/224.1 = 50% | Further development of water resources is needed |
Evapotranspiration | ||
6. Transpiration fraction | = = 108.6/146 = 74% Rainfed = 6.3/10.3 = 61%, Irrigated = 80.8/101.8 = 79% | Low evaporation from irrigated areas, possibly due to partial wetting of soil under the pressurized systems used. |
7. Beneficial fraction | = 118.3/146 = 81% | Good utilization of ET amounts |
8. Agricultural ET fraction | = 106.4/146 = 73% | Area dominated by agricultural activities |
9. Irrigated ET fraction | 96.1/146 = 66% | Considerable proportion of ET came from irrigated areas |
Catchment | Area (km2) | Minimum Capacity (MCM) | Suitability for Further Investigation/Constraints |
---|---|---|---|
Wadi Al-Arab | 258.8 | 9.44 | Developed (18 MCM capacity) |
Wadi Quasyba | 21.4 | 0.78 | Suitable |
Wadi At-Tayyiba | 55.4 | 2.02 | Suitable |
Wadi Ziglab | 103.7 | 3.78 | Developed (4.0 MCM capacity) |
Abu Ziyad | 24.6 | 0.90 | Not suitable/land ownership |
Rod Um Eddeib | 3.0 | 0.11 | Developed through FAO-RNE |
Rod Khalat Salman | 3.2 | 0.12 | Not suitable/touristic sites |
Rod Al-Bahja | 1.9 | 0.07 | Not suitable/urban |
Hemma | 19.7 | 0.72 | Suitable |
Jurum | 18.3 | 0.67 | Suitable |
Nhair | 19.3 | 0.70 | Suitable |
Wadi Yasaneh | 7.7 | 0.28 | Not suitable/urban |
Wadi Al-Yabis | 121.7 | 4.44 | Suitable |
Wadi Abu Sufair | 8.4 | 0.31 | Not suitable/urban |
Wadi Al-Harouth | 17.2 | 0.63 | Suitable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bakri, J.T.; D’Urso, G.; Batchelor, C.; Abukhalaf, M.; Alobeiaat, A.; Al-Khreisat, A.; Vallee, D. Remote Sensing-Based Agricultural Water Accounting for the North Jordan Valley. Water 2022, 14, 1198. https://doi.org/10.3390/w14081198
Al-Bakri JT, D’Urso G, Batchelor C, Abukhalaf M, Alobeiaat A, Al-Khreisat A, Vallee D. Remote Sensing-Based Agricultural Water Accounting for the North Jordan Valley. Water. 2022; 14(8):1198. https://doi.org/10.3390/w14081198
Chicago/Turabian StyleAl-Bakri, Jawad T., Guido D’Urso, Charles Batchelor, Motasem Abukhalaf, Adel Alobeiaat, Areej Al-Khreisat, and Domitille Vallee. 2022. "Remote Sensing-Based Agricultural Water Accounting for the North Jordan Valley" Water 14, no. 8: 1198. https://doi.org/10.3390/w14081198