Study of the Three Gorges Dam’s Impact on the Discharge of Yangtze River during Flood Season after Its Full Operation in 2009
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. The Xin’anjiang Rainfall–Runoff Model
3.2. The Muskingum Routing Model
3.3. The Hydrological Model for Reconstructing the Discharge Unaffected by the TGD
4. Results
4.1. Reconstructing the Flow Downstream the TGD
4.2. Quantifying the TGD’s Impact on the Discharge of the Yangtze River during Flood Season
4.2.1. The Maximum 1-Day Discharge during Flood Season
4.2.2. The Maximum 30-Day Runoff during Flood Season
4.2.3. The Flood Season Runoff
4.2.4. The and of the Daily Discharge during Flood Season
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundzewicz, Z.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood risk and its reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- Plate, E.J. Flood risk and flood management. J. Hydrol. 2002, 267, 2–11. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Lumsdon, A.E.; MacDonald, G.K.; Zarfl, C.; Reidy Liermann, C. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 2015, 10, 015001. [Google Scholar] [CrossRef]
- Hu, B.; Yang, Z.; Wang, H.; Sun, X.; Bi, N.; Li, G. Sedimentation in the three gorges dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea. Hydrol. Earth Syst. Sci. 2009, 13, 2253–2264. [Google Scholar] [CrossRef] [Green Version]
- International Commision on Large Dams World Register of Dams: General Synthesis 2021. Available online: https://www.icold-cigb.org/GB/world_register/general_synthesis.asp (accessed on 20 December 2021).
- Sawyer, A.H.; Cardenas, M.B.; Bomar, A.; Mackey, M. Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrol. Process. 2009, 23, 2129–2137. [Google Scholar] [CrossRef]
- Zahar, Y.; Ghorbel, A.; Albergel, J. Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia). J. Hydrol. 2008, 351, 318–330. [Google Scholar] [CrossRef]
- Zeilhofer, P.; de Moura, R.M. Hydrological changes in the northern Pantanal caused by the Manso dam: Impact analysis and suggestions for mitigation. Ecol. Eng. 2009, 35, 105–117. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Xu, C.; Xu, Y.; Jiang, T. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J. Hydrol. 2006, 324, 255–265. [Google Scholar] [CrossRef]
- Chen, J.; Finlayson, B.L.; Wei, T.; Sun, Q.; Webber, M.; Li, M.; Chen, Z. Changes in monthly flows in the Yangtze River, China—With special reference to the Three Gorges Dam. J. Hydrol. 2016, 536, 293–301. [Google Scholar] [CrossRef]
- Mei, X.; Dai, Z.; van Gelder, P.H.A.J.M.; Gao, J. Linking Three Gorges Dam and downstream hydrological regimes along the Yangtze River, China: Impacts of TGD on Yangtze River system. Earth Space Sci. 2015, 2, 94–106. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Finlayson, B.L.; Webber, M.; Wei, T.; Li, M.; Chen, Z. Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff. J. Hydrol. 2014, 513, 403–412. [Google Scholar] [CrossRef]
- Dai, Z.; Du, J.; Li, J.; Li, W.; Chen, J. Runoff characteristics of the Changjiang River during 2006: Effect of extreme drought and the impounding of the Three Gorges Dam: Changjiang River runoff. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Su, Z.; Ho, M.; Hao, Z.; Lall, U.; Sun, X.; Chen, X.; Yan, L. The impact of the Three Gorges Dam on summer streamflow in the Yangtze River basin. Hydrol. Process. 2020, 34, 705–717. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Sun, X.; Devineni, N.; Lall, U.; Hao, Z.; Chen, X. The effects of pre-season high flows, climate, and the Three Gorges Dam on low flow at the Three Gorges Region, China. Hydrol. Process. 2020, 34, 2088–2100. [Google Scholar] [CrossRef]
- Tian, J.; Chang, J.; Zhang, Z.; Wang, Y.; Wu, Y.; Jiang, T. Influence of Three Gorges Dam on downstream low flow. Water 2019, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Yin, D.; Finlayson, B.; Chen, Z. Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam. Geomorphology 2012, 147–148, 27–34. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Chen, X. Influence of Three Gorges Dam on streamflow and sediment load of the middle Yangtze River, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 569–579. [Google Scholar] [CrossRef]
- Guo, S.; Xiong, L.; Zha, X.; Zeng, L.; Cheng, L. Impacts of the Three Gorges Dam on the streamflow fluctuations in the downstream region. J. Hydrol. 2021, 598, 126480. [Google Scholar] [CrossRef]
- Nakayama, T.; Shankman, D. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods. Glob. Planet. Change 2013, 100, 38–50. [Google Scholar] [CrossRef]
- Mei, X.; Dai, Z.; Darby, S.E.; Gao, S.; Wang, J.; Jiang, W. Modulation of extreme flood levels by impoundment significantly offset by floodplain loss downstream of the Three Gorges Dam. Geophys. Res. Lett. 2018, 45, 3147–3155. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Gleason, C.J.; Wada, Y. Downstream Yangtze River levels impacted by Three Gorges Dam. Environ. Res. Lett. 2013, 8, 044012. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Zhu, L.; Liu, W.; Han, J.; Yang, Y. Influence of large reservoir operation on water-levels and flows in reaches below dam: Case study of the Three Gorges Reservoir. Sci. Rep. 2017, 7, 15640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Huang, Q.; Opp, C.; Hennig, T.; Marold, U. Impacts and implications of major changes caused by the Three Gorges Dam in the middle reaches of the Yangtze River, China. Water Resour. Manag. 2012, 26, 3367–3378. [Google Scholar] [CrossRef]
- Yang, S.L.; Xu, K.H.; Milliman, J.D.; Yang, H.F.; Wu, C.S. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhang, Q.; Luo, M. Assessing the effects of the Three Gorges Dam and upstream inflow change on the downstream flow regime during different operation periods of the dam. Hydrol. Process. 2019, 33, 2885–2897. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Zhang, Q.; Feng, S. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. J. Hydrol. 2012, 416–417, 19–27. [Google Scholar] [CrossRef]
- Jiang, L.; Ban, X.; Wang, X.; Cai, X. Assessment of hydrologic alterations caused by the Three Gorges Dam in the middle and lower reaches of Yangtze River, China. Water 2014, 6, 1419–1434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, L.; Wang, Y.-G.; Werner, A.D.; Xin, P.; Jiang, T.; Barry, D.A. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys. Res. Lett. 2012, 39, 2012GL053431. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sun, F.; Liu, W. Characteristics of streamflow in the main stream of Changjiang River and the impact of the Three Gorges Dam. Catena 2020, 189, 104498. [Google Scholar] [CrossRef]
- Ren-jun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Ahirwar, A.; Jain, M.K.; Perumal, M. Performance of the Xinanjiang model. In Hydrologic Modeling; Singh, V.P., Yadav, S., Yadava, R.N., Eds.; Water Science and Technology Library; Springer: Singapore, 2018; Volume 81, pp. 715–731. ISBN 978-981-10-5800-4. [Google Scholar]
- Li, H.; Zhang, Y.; Chiew, F.H.S.; Xu, S. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J. Hydrol. 2009, 370, 155–162. [Google Scholar] [CrossRef]
- Zang, S.; Li, Z.; Zhang, K.; Yao, C.; Liu, Z.; Wang, J.; Huang, Y.; Wang, S. Improving the flood prediction capability of the Xin’anjiang model by formulating a new physics-based routing framework and a key routing parameter estimation method. J. Hydrol. 2021, 603, 126867. [Google Scholar] [CrossRef]
- Das, A. Parameter estimation for Muskingum models. J. Irrig. Drain. Eng. 2004, 130, 140–147. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2019; Volume 780, pp. 43–55. ISBN 978-3-319-93024-4. [Google Scholar]
- The Definition of Flood Season. Available online: http://www.cma.gov.cn/kppd/kppdrt/201404/t20140409_242890.html (accessed on 14 February 2022).
- Brown, C.E. Coefficient of variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. ISBN 978-3-642-80330-7. [Google Scholar]
- Yan, Z.; Tian, B. Ratio method to the mean estimation using coefficient of skewness of auxiliary variable. In Information Computing and Applications; Zhu, R., Zhang, Y., Liu, B., Liu, C., Eds.; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 106, pp. 103–110. ISBN 978-3-642-16338-8. [Google Scholar]
- Lai, X.; Jiang, J.; Yang, G.; Lu, X.X. Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River?: TGD and low water level. Hydrol. Process. 2014, 28, 150–160. [Google Scholar] [CrossRef]
Station | Cuntan | Wulong * | Yichang | Luoshan | Hankou | Jiujiang | Datong |
---|---|---|---|---|---|---|---|
Distance | −597 | −543 | 43 | 452 | 643 | 877 | 1123 |
Area | 866,559 | 83,035 | 1,005,501 | 1,294,911 | 1,488,036 | 1,759,349 | 1,705,383 |
Period | Yichang | Luoshan | Hankou | Jiujiang | Datong | Average |
---|---|---|---|---|---|---|
1990–1999 | 0.993 | 0.981 | 0.983 | 0.979 | 0.973 | 0.982 |
2000–2002 | 0.992 | 0.978 | 0.978 | 0.964 | 0.963 | 0.975 |
2003–2018 | 0.890 | 0.943 | 0.893 | 0.931 | 0.835 | 0.898 |
2003–2008 | 0.953 | 0.942 | 0.952 | 0.944 | 0.895 | 0.937 |
2009–2018 | 0.838 | 0.867 | 0.852 | 0.832 | 0.801 | 0.838 |
Year | Yichang | Luoshan | Hankou | Jiujiang | Datong |
---|---|---|---|---|---|
2009 | 11,517 | 6946 | 5408 | 5652 | 5006 |
2010 | 16,838 | 11,106 | 2737 | 6920 | 13,292 |
2011 | 10,585 | 7127 | 7470 | 8001 | 14,673 |
2012 | 11,453 | 8785 | 10,269 | 12,575 | 19,931 |
2013 | 6766 | 6153 | 5589 | 6935 | 5741 |
2014 | 531 | 4942 | 7367 | 8074 | 15,058 |
2015 | 2324 | 3852 | 6479 | 5557 | 10,369 |
2016 | 6662 | 5751 | 7837 | 9610 | 17,332 |
2017 | 3099 | 3431 | 8317 | 10,458 | 12,361 |
2018 | 10,972 | 9147 | 11,681 | 12,571 | 18,089 |
Average | 8074.7 | 6724.0 | 7315.4 | 8635.3 | 13,185.2 |
Year | Luoshan | Hankou | Jiujiang | Datong |
---|---|---|---|---|
2009 | 4012 | 3244 | 3179 | 2070 |
2010 | 6118 | 5164 | 5127 | 5161 |
2011 | 5186 | 4652 | 4577 | 3777 |
2012 | 2775 | 2064 | 2125 | 1615 |
2013 | 3244 | 2875 | 2811 | 2139 |
2014 | 1151 | 1626 | 1633 | 1877 |
2015 | 1727 | 1987 | 1991 | 2762 |
2016 | 3863 | 2987 | 2867 | 1041 |
2017 | 1331 | 1058 | 1052 | 475 |
2018 | 4355 | 4026 | 3965 | 3203 |
Average | 3376.0 | 2968.2 | 2932.6 | 2412.0 |
Year | Yichang | Luoshan | Hankou | Jiujiang | Datong |
---|---|---|---|---|---|
2009 | 27.6 | 39.3 | 46.5 | 41.8 | 47.0 |
2010 | 77.1 | 110.0 | 51.8 | 51.1 | 229.2 |
2011 | 52.3 | 108.5 | 125.6 | 122.1 | 231.9 |
2012 | 72.2 | 165.0 | 178.8 | 217.7 | 377.6 |
2013 | 24.2 | 105.6 | 86.2 | 137.9 | 183.5 |
2014 | 75.5 | 97.1 | 147.6 | 169.2 | 290.1 |
2015 | 90.5 | 56.3 | 124.6 | 149.6 | 311.5 |
2016 | 46.9 | 124.6 | 209.7 | 230.8 | 366.0 |
2017 | 42.7 | 70.6 | 191.0 | 242.2 | 255.6 |
2018 | 23.6 | 132.5 | 185.1 | 211.4 | 302.5 |
Average | 53.27 | 100.97 | 134.68 | 157.38 | 259.50 |
Year | Yichang | Luoshan | Hankou | Jiujiang | Datong |
---|---|---|---|---|---|
2009 | 175.82 | 297.79 | 275.62 | 212.26 | 195.26 |
2010 | 190.00 | 326.24 | 352.60 | 331.87 | 650.10 |
2011 | 320.69 | 542.67 | 369.60 | 427.08 | 582.98 |
2012 | 112.83 | 309.75 | 539.03 | 576.43 | 936.16 |
2013 | 144.10 | 327.03 | 259.32 | 485.05 | 661.94 |
2014 | 70.51 | 439.70 | 586.80 | 746.10 | 1031.43 |
2015 | 163.41 | 647.71 | 853.71 | 956.58 | 1517.10 |
2016 | 153.77 | 452.01 | 996.62 | 994.65 | 1326.63 |
2017 | 119.85 | 665.01 | 1027.91 | 1201.99 | 1524.93 |
2018 | 81.39 | 445.33 | 694.77 | 766.91 | 810.93 |
Average | 153.24 | 445.32 | 595.60 | 669.89 | 923.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Zhang, Y.; Zhang, L.; Chen, N.; Zou, Y.; Du, Y.; Liu, J. Study of the Three Gorges Dam’s Impact on the Discharge of Yangtze River during Flood Season after Its Full Operation in 2009. Water 2022, 14, 1052. https://doi.org/10.3390/w14071052
Dong W, Zhang Y, Zhang L, Chen N, Zou Y, Du Y, Liu J. Study of the Three Gorges Dam’s Impact on the Discharge of Yangtze River during Flood Season after Its Full Operation in 2009. Water. 2022; 14(7):1052. https://doi.org/10.3390/w14071052
Chicago/Turabian StyleDong, Wenxun, Yanjun Zhang, Liping Zhang, Ningyue Chen, Yixuan Zou, Yaodong Du, and Jiaming Liu. 2022. "Study of the Three Gorges Dam’s Impact on the Discharge of Yangtze River during Flood Season after Its Full Operation in 2009" Water 14, no. 7: 1052. https://doi.org/10.3390/w14071052
APA StyleDong, W., Zhang, Y., Zhang, L., Chen, N., Zou, Y., Du, Y., & Liu, J. (2022). Study of the Three Gorges Dam’s Impact on the Discharge of Yangtze River during Flood Season after Its Full Operation in 2009. Water, 14(7), 1052. https://doi.org/10.3390/w14071052