The Effects of Contrast between Dark- and Light-Coloured Tanks on the Growth Performance and Antioxidant Parameters of Juvenile European Perch (Perca fluviatilis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Water Quality Parameters
2.3. Fish Growth Parameters
2.4. Sample Collection
2.5. ELISA Assay
2.6. Statistical Analysis
3. Results
3.1. Production Parameters
3.2. Antioxidant Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Jentoft, S.; Held, J.A.; Malison, J.A.; Barry, T.P. Ontogeny of the cortisol stress response in yellow perch (Perca flavescens). Fish Physiol. Biochem. 2002, 26, 371–378. [Google Scholar] [CrossRef]
- Policar, T.; Schaefer, F.J.; Panana, E.; Meyer, S.; Teerlinck, S.; Toner, D.; Żarski, D. Recent progress in European percid fish culture production technology—Tackling bottlenecks. Aquac. Int. 2019, 27, 1151–1174. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Statistics. Global Capture Production 1950–2019 (FishstatJ). FAO Fisheries Division. 2021. Available online: www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 10 February 2022).
- Griffiths, W.E. Food and feeding habits of European perch in the Selwyn River, Canterbury, New Zealand. N. Z. J. Mar. Freshwater Res. 1976, 10, 417–428. [Google Scholar] [CrossRef]
- Orban, E.; Nevigato, T.; Masci, M.; Di Lena, G.; Casini, I.; Caproni, R.; Rampacci, M. Nutritional quality and safety of European perch (Perca fluviatilis) from three lakes of Central Italy. Food Chem. 2007, 100, 482–490. [Google Scholar] [CrossRef]
- Mélard, C.; Kestemont, P.; Grignard, J.C. Intensive culture of juvenile and adult Eurasian perch (P. fluviatilis): Effect of major biotic and abiotic factors on growth. J. Appl. Ichthyol. 1996, 12, 175–180. [Google Scholar] [CrossRef]
- Stejskal, V.; Tran, H.Q.; Prokesova, M.; Gebauer, T.; Giang, P.T.; Gai, F.; Gasco, L. Partially defatted Hermetia illucens larva meal in diet of eurasian perch (Perca fluviatilis) juveniles. Animals 2020, 10, 1876. [Google Scholar] [CrossRef]
- Policar, T.; Samarin, A.M.; Mélard, C. Culture Methods of Eurasian Perch During Ongrowing. In Biology and Culture of Percid Fishes: Principles and Practices; Kestemont, P., Dabrowski, K., Summerfelt, R.C., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2015; pp. 417–435. [Google Scholar]
- Jentoft, S.; Aastveit, A.H.; Torjesen, P.A.; Andersen, Ø. Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 141, 353–358. [Google Scholar] [CrossRef]
- Tran, H.Q.; Van Doan, H.; Stejskal, V. Does dietary Tenebrio molitor affect swimming capacity, energy use, and physiological responses of European perch Perca fluviatilis? Aquaculture 2021, 539, 736610. [Google Scholar] [CrossRef]
- Strand, A.; Magnhagen, C.; Alanara, A. Effects of repeated disturbances on feed intake, growth rates and energy expenditures of juvenile perch, Perca fluviatilis. Aquaculture 2007, 265, 163–168. [Google Scholar] [CrossRef]
- Rotllant, J.; Tort, L.; Montero, D.; Pavlidis, M.; Martinez, M.; Bonga, S.W.; Balm, P.H.M. Background colour influence on the stress response in cultured red porgy Pagrus pagrus. Aquaculture 2003, 223, 129–139. [Google Scholar] [CrossRef]
- Palińska-Żarska, K.; Żarski, D.; Krejszeff, S.; Nowosad, J.; Biłas, M.; Kucharczyk, D. Tank wall color affects swimbladder inflation in Eurasian perch, Perca fluviatilis l., under controlled conditions. Commun. Agric. Appl. Biol. Sci. 2013, 78, 338–341. [Google Scholar]
- Tamazouzt, L.; Chatain, B.; Fontaine, P. Tank wall colour and light level affect growth and survival of Eurasian perch larvae (Perca fluviatilis L.). Aquaculture 2000, 182, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Mclean, M.; Cotter, P.; Claire, T.; King, N. Tank color impacts performance of cultured fish. Ribar. Croat. J. Fish. 2008, 66, 43–54. [Google Scholar]
- Monk, J.; Puvanendran, V.; Brown, A.J. Does different tank bottom colour affect the growth, survival and foraging behaviour of Atlantic cod (Gadus morhua) larvae? Aquaculture 2008, 277, 197–202. [Google Scholar] [CrossRef]
- Strand, Å.; Alanärä, A.; Staffan, F.; Magnhagen, C. Effects of tank colour and light intensity on feed intake, growth rate and energy expenditure of juvenile Eurasian perch, Perca fluviatilis L. Aquaculture 2007, 272, 312–318. [Google Scholar] [CrossRef]
- Jentoft, S.; Øxnevad, S.; Aastveit, A.H.; Andersen, Ø. Effects of tank wall color and up-welling water flow on growth and survival of Eurasian perch larvae (Perca fluviatilis). J. World Aquacult. Soc. 2006, 37, 313–317. [Google Scholar] [CrossRef]
- Kestemont, P.; Mélard, C.; Held, J.A.; Dabrowski, K. Culture Methods of Eurasian Perch and Yellow Perch Early Life Stages. In Biology and Culture of Percid Fishes: Principles and Practices; Kestemont, P., Dabrowski, K., Summerfelt, R.C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 265–293. [Google Scholar]
- Head, A.B.; Malison, J.A. Effects of Lighting Spectrum and Disturbance Level on the Growth and Stress Responses of Yellow Perch Perca flavescens. J. World Aquac. Soc. 2000, 31, 73–80. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Franke, S.; Preuer, T.; Kloas, W. Spotlight on fish: Light pollution affects circadian rhythms of European perch but does not cause stress. Sci. Total Environ. 2015, 511, 516–522. [Google Scholar] [CrossRef]
- Baekelandt, S.; Mandiki, S.N.; Kestemont, P. Are cortisol and melatonin involved in the immune modulation by the light environment in pike perch Sander lucioperca? J. Pineal Res. 2019, 67, e12573. [Google Scholar] [CrossRef]
- Alanärä, A.; Strand, Å. The Energy Requirements of Percid Fish in Culture. In Biology and Culture of Percid Fishes: Principles and Practices; Kestemont, P., Dabrowski, K., Summerfelt, R.C., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2015; pp. 353–368. [Google Scholar]
- Basu, N.; Nakano, T.; Grau, E.G.; Iwama, G.K. The effects of cortisol on heat shock protein 70 levels in two fish species. Gen. Comp. Endocrinol. 2001, 124, 97–105. [Google Scholar] [CrossRef]
- Abele, D.; Heise, K.; Portner, H.O.; Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 2002, 205, 1831–1841. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, Y.; Zhang, J.; Yu, H.; Wang, X. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No. 1 exposure. Environ. Toxicol. 2007, 22, 256–263. [Google Scholar] [CrossRef]
- Köhler, H.R.; Bartussek, C.; Eckwert, H.; Farian, K.; Gränzer, S.; Knigge, T.; Kunz, N. The hepatic stress protein (hsp70) response to interacting abiotic parameters in fish exposed to various levels of pollution. J. Aquat. Ecosyst. Stress Recovery 2001, 8, 261–279. [Google Scholar] [CrossRef]
- Defo, M.A.; Bernatchez, L.; Campbell, P.G.; Couture, P. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch. Aquat. Toxicol. 2014, 154, 207–220. [Google Scholar] [CrossRef]
- Eroglu, A.; Dogan, Z.; Kanak, E.G.; Atli, G.; Canli, M. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environ. Sci. Pollut. Res. 2015, 22, 3229–3237. [Google Scholar] [CrossRef]
- Gao, X.J.; Tang, B.; Liang, H.H.; Yi, L.; Wei, Z.G. Selenium deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulation of the MAPK pathway in the head kidney of carp. Fish Shellfish Immunol. 2019, 91, 284–292. [Google Scholar] [CrossRef]
- Akram, R.; Iqbal, R.; Hussain, R.; Jabeen, F.; Ali, M. Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobilis) fish at low concentrations. Environ. Pollut. 2021, 268, 115896. [Google Scholar] [CrossRef]
- Aziz, M.A.; Diab, A.S.; Mohammed, A.A. Antioxidant categories and mode of action. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019; pp. 3–22. [Google Scholar]
- Birnie-Gauvin, K.; Costantini, D.; Cooke, S.J.; Willmore, W.G. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish Fish. 2017, 18, 928–942. [Google Scholar] [CrossRef]
- Horváth, M.; Babinszky, L. Impact of selected antioxidant Vitamins (Vitamin A E and C) and micro minerals (Zn, Se) on the antioxidant status and performance under high environmental temperature in poultry. A review. Acta Agric. Scand. A—Anim. Sci. 2019, 68, 152–160. [Google Scholar] [CrossRef]
- Padmini, E.; Rani, M.U. Impact of seasonal variation on HSP70 expression quantitated in stressed fish hepatocytes. Comp. Biochem. Physiol. B Biochem. 2008, 151, 278–285. [Google Scholar] [CrossRef]
- Yamashita, M.; Takeshi, Y.; Nobuhiko, O. Stress protein HSP70 in fish. Aqua-BioSci. Monogr. 2010, 3, 111–141. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Mini, J.; Munuswamy, N. Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicol. Environ. Saf. 2013, 98, 8–18. [Google Scholar] [CrossRef]
- Wendelaar, B.; Sjoerd, E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef]
- Grutter, A.S.; Pankhurst, N.W. The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish Hemigymnus melapterus. J. Fish Biol. 2000, 57, 391–401. [Google Scholar] [CrossRef]
- Laflamme, J.S.; Couillard, Y.; Campbell, P.G.; Hontela, A. Interrenal metallothionein and cortisol secretion in relation to Cd, Cu, and Zn exposure in yellow perch, Perca flavescens, from Abitibi lakes. Can. J. Fish. Aquat. Sci. 2000, 57, 1692–1700. [Google Scholar] [CrossRef]
- Acerete, L.; Balasch, J.C.; Espinosa, E.; Josa, A.; Tort, L. Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture 2004, 237, 167–178. [Google Scholar] [CrossRef]
- Wysocki, L.E.; Dittami, J.P.; Ladich, F. Ship noise and cortisol secretion in European freshwater fishes. Biol. Conserv. 2006, 128, 501–508. [Google Scholar] [CrossRef]
- Douxfils, J.; Mandiki, S.N.M.; Marotte, G.; Wang, N.; Silvestre, F.; Milla, S.; Kestemont, P. Does domestication process affect stress response in juvenile Eurasian perch Perca fluviatilis? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 159, 92–99. [Google Scholar] [CrossRef]
- Narra, M.R.; Rajender, K.; Reddy, R.R.; Murty, U.S.; Begum, G. Insecticides induced stress response and recuperation in fish: Biomarkers in blood and tissues related to oxidative damage. Chemosphere 2017, 168, 350–357. [Google Scholar] [CrossRef]
- Girao, P.M.; Pereira da Silva, E.M.; de Melo, M.P. Dietary lycopene supplementation on Nile Tilapia (Oreochromis niloticus) juveniles submitted to confinement: Effects on cortisol level and antioxidant response. Aquac. Res. 2012, 43, 789–798. [Google Scholar] [CrossRef]
- Jabeen, S.; Salim, M.; Akhtar, P. Feed conversion ratio of major carp Cirrhinus mrigala fingerlings fed on cotton seed meal, fish meal and barley. Pak. Vet. J. 2004, 24, 42–45. [Google Scholar]
- Abidi, S.F.; Khan, M.A. Dietary leucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac. Res. 2007, 38, 478–486. [Google Scholar] [CrossRef]
- Ibrahim, N.; Naggar, G.E. Water quality, fish production and economics of Nile tilapia, Oreochromis niloticus, and African catfish, Clarias gariepinus, monoculture and polycultures. J. World Aquac. Soc. 2010, 41, 574–582. [Google Scholar] [CrossRef]
- Bochert, R. Comparative performance, biochemical composition, and fatty acid analysis of Eurasian perch (Perca fluviatilis) during grow-out in RAS fed different commercial diets. J. Appl. Aquac. 2020, 34, 208–222. [Google Scholar] [CrossRef]
- Pottinger, T.G.; Carrick, T.R. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen. Comp. Endocrinol. 1999, 116, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Tanck, M.W.T.; Claes, T.; Bovenhuis, H.; Komen, J. Exploring the genetic background of stress using isogenic progenies of common carp selected for high or low stress-related cortisol response. Aquaculture 2002, 204, 419–434. [Google Scholar] [CrossRef]
- De Abreu, M.S.; Giacomini, A.C.; Genario, R.; Dos Santos, B.E.; Marcon, L.; Demin, K.A.; Kalueff, A.V. The impact of housing environment color on zebrafish anxiety-like behavioral and physiological (cortisol) responses. Gen. Comp. Endocrinol. 2020, 294, 113499. [Google Scholar] [CrossRef]
- Henrique, M.M.F.; Gomes, E.F.; Gouillou-Coustans, M.F.; Oliva-Teles, A.; Davies, S.J. Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture 1998, 161, 415–426. [Google Scholar] [CrossRef]
- Montero, D.; Marrero, M.; Izquierdo, M.S.; Robaina, L.; Vergara, J.M.; Tort, L. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture 1999, 171, 269–278. [Google Scholar] [CrossRef]
- Narra, M.R.; Rajender, K.; Reddy, R.R.; Rao, J.V.; Begum, G. The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere 2015, 132, 172–178. [Google Scholar] [CrossRef]
- Lee, K.J.; Dabrowski, K. Long-term effects and interactions of dietary vitamins C and E on growth and reproduction of yellow perch, Perca flavescens. Aquaculture 2004, 230, 377–389. [Google Scholar] [CrossRef]
- Vogel, R.; Wiesinger, H.; Hamprecht, B.; Dringen, R. The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci. Lett. 1999, 275, 97–100. [Google Scholar] [CrossRef]
- Díaz-Flores, M.; Angeles-Mejia, S.; Baiza-Gutman, L.A.; Medina-Navarro, R.; Hernández-Saavedra, D.; Ortega-Camarillo, C.; Alarcon-Aguilar, F.J. Effect of an aqueous extract of Cucurbita ficifolia Bouché on the glutathione redox cycle in mice with STZ-induced diabetes. J. Ethnopharmacol. 2012, 144, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–725S. [Google Scholar] [CrossRef] [Green Version]
- Vinagre, C.; Madeira, D.; Narciso, L.; Cabral, H.N.; Diniz, M. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol. Indic. 2012, 23, 274–279. [Google Scholar] [CrossRef]
- Tian, H.Y.; Zhang, D.D.; Xu, C.; Wang, F.; Liu, W.B. Effects of light intensity on growth, immune responses, antioxidant capability and disease resistance of juvenile blunt snout bream Megalobrama amblycephala. Fish Shellfish Immunol. 2015, 47, 674–680. [Google Scholar] [CrossRef]
- Lucentini, L.; Lorenzoni, M.; Panara, F.; Mearelli, M. Effects of short-and long-term thermal stress in perch (Perca fluviatilis) determined through fluctuating asymmetry and HSP70 expression. Ital. J. Zool. 2002, 69, 13–17. [Google Scholar] [CrossRef]
Experimental Treatments | |||
Parameters | Control | DS | DB |
S (%) | 100 | 100 | 100 |
BWf (g) | 49.22 ± 11.21 a | 48.70 ± 11.21 a | 54.24 ± 9.70 b |
SGR (%/day) | 0.84 ± 0.14 a,b | 0.76 ± 0.08 a | 1.00 ± 0.06 b |
K | 2.62 ± 0.25 | 2.66 ± 0.25 | 2.70 ± 0.27 |
FCR (g/g) | 1.38 ± 0.24 | 1.40 ± 0.19 | 1.29 ± 0.13 |
CV% | 22.40 ± 6.56 | 22.44 ± 4.66 | 17.51 ± 2.46 |
Antioxidant | Control | DS | DB |
---|---|---|---|
Cortisol (mg/mL) | 56.62 ± 2.89 a | 66.33 ±2.08 b | 55.79 ± 3.20 a |
Glucose (mmol/L) | 4.48 ± 0.95 a,b | 5.33 ± 0.94 b | 4.13 ± 0.83 a |
Catalase (mU/mL) | 4.95 ± 0.51 a | 6.94 ± 0.51 b | 4.68 ± 0.91 a |
Glutathione peroxidase (GPx) (mU/mL) | 182.52 ± 14.11 | 220.09 ± 37.62 | 169.48 ± 17.66 |
Glutathione reductase (GR) (mU/mL) | 21.42 ± 3.94 b | 12.06 ± 1.13 a | 22.51 ± 5.02 b |
Reduced glutathione (GSH) (µM) | 19.68 ± 2.09 b | 14.74 ± 3.93 a | 23.15 ± 0.57 b |
Glutathione disulphide (GSSG) (µM) | 9.76 ± 1.07 b | 7.37 ± 1.96 a | 11.66 ± 0.26 b |
Vitamin C (nmol/mL) | 46.54 ± 13.60 a,b | 30.38 ± 9.67 a | 92.32 ± 59.99 b |
Malondialdehyde (MDA) (nmol/mL) | 1029.31 ± 183.83 a | 1604.59 ± 412.06 b | 1172.85 ± 239.08 a,b |
HSP70 (ng/L) | 17.03 ± 0.85 | 17.11 ± 1.26 | 17.05 ± 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, Á.; Homoki, D.Z.; Bársony, P.; Kertész, A.; Remenyik, J.; Pesti-Asbóth, G.; Fehér, M. The Effects of Contrast between Dark- and Light-Coloured Tanks on the Growth Performance and Antioxidant Parameters of Juvenile European Perch (Perca fluviatilis). Water 2022, 14, 969. https://doi.org/10.3390/w14060969
Molnár Á, Homoki DZ, Bársony P, Kertész A, Remenyik J, Pesti-Asbóth G, Fehér M. The Effects of Contrast between Dark- and Light-Coloured Tanks on the Growth Performance and Antioxidant Parameters of Juvenile European Perch (Perca fluviatilis). Water. 2022; 14(6):969. https://doi.org/10.3390/w14060969
Chicago/Turabian StyleMolnár, Áron, Dávid Zoltán Homoki, Péter Bársony, Attila Kertész, Judit Remenyik, Georgina Pesti-Asbóth, and Milán Fehér. 2022. "The Effects of Contrast between Dark- and Light-Coloured Tanks on the Growth Performance and Antioxidant Parameters of Juvenile European Perch (Perca fluviatilis)" Water 14, no. 6: 969. https://doi.org/10.3390/w14060969