Karst Lake’s Dynamics Analysis as a Tool for Aquifer Characterisation at Field Scale, Example of Cryptodepression—Red Lake in Croatia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Used
3.2. Method Used
3.2.1. Recession Curve Analysis
3.2.2. Correlation and Spectral Analysis
4. Results and Discussion
4.1. Analysis of Lake’s Dynamics and Recession Periods
4.2. Analysis in Spatial and Frequency Domain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bonacci, O. Karst Hydrology With Special Reference to the Dinaric Karst; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Stevanović, Z. Karst Waters in Potable Water Supply: A Global Scale Overview. Environ. Earth Sci. 2019, 78, 662. [Google Scholar] [CrossRef]
- Bonacci, O. Preliminary Analysis of the Decrease in Water Level of Vrana Lake on the Small Carbonate Island of Cres (Dinaric Karst, Croatia). Geol. Soc. Spec. Publ. 2018, 466, 307–317. [Google Scholar] [CrossRef]
- Ožanić, N.; Rubinić, J. Hidraulic Limitation of Exploitation Vrana Lake for Water Supply (Croatia). In Proceedings of the XXIX IAHR Congress—21st Century: The New Era for Hydraulic Research and its Applications, Beijing, China, 16–21 September 2001; pp. 100–106. [Google Scholar]
- Garašić, M. New Speleohydrogeological Research of Crveno Jezero (Red Lake) near Imotski in Dinaric Karst Area (Croatia, Europe)—International Speleodiving Expedition “Crveno Jezero 98”. In Proceedings of the 13th International Congress of Speleology, Brasilia, Brazil, 15–22 July 2001; pp. 457–460. [Google Scholar]
- Gavazzi, A. Die Seen Des Karstes (Karst Lakes). In Abhandlungen der K. K. Geographischen Gesellschaft; Lechner: Vienna, Austria, 1903; Volume 5, p. 136. [Google Scholar]
- Cvijić, J. Geomorfologija 2 (Geomorphology 2); Srpska Akademija Nauka i Umetnosti: Beograd, Serbia, 1926. [Google Scholar]
- Andrić, I.; Jukić, B.; Bonacci, O. Pregled Recentnih Znanstvenih Istraživanja Vezanih Za Crveno i Modro Jezero u Imotskom. In Zavičajna Baština—Problemi i Perspektive u Upravljanju Baštinom; Parlov, M., Kolovrat, I., Biočić, M., Eds.; Crkva u Svijetu: Split, Croatia, 2018; pp. 31–41. [Google Scholar]
- Roglić, J. Imotsko Polje—Fizičko-Geografske Osobine. (Physical-Geographic Characteristics of Imotski Polje). Poseb. Izd. Geogr. Druš. 1938, 21, 125. [Google Scholar]
- Bonacci, O. Crveno i Modro Jezero Kod Imotskog. Hrvat. Vode 2006, 14, 45–54. [Google Scholar]
- Petrik, M. Hidrografska Mjerenja u Okolici Imotskog (Hydrographic Measurements near Imotski). Ljetop. JAZU 1960, 64, 266–286. [Google Scholar]
- Bojanić, L.; Ivičić, D.; Batić, V. Hidrogeologija Imotskog Polja s Osvrtom Na Značaj u Regionalnom Smislu. Geol. Vjesn. 1981, 34, 127–135. [Google Scholar]
- Milanović, P.T. Karst Hydrogeology; Water Resources Publications: Littleton, CO, USA, 1981; p. 434. [Google Scholar]
- Bahun, S. O Postanku Crvenog i Modrog Jezera Kod Imotskog. Geol. Vjesn. 1991, 44, 275–280. [Google Scholar]
- Bonacci, O.; Andrić, I. Morphological Study of Red Lake in Dinaric Karst Based on Terrestrial Laser Scaning and Sonar System. Acta Carsolog. 2014, 43, 229. [Google Scholar] [CrossRef][Green Version]
- Bonacci, O.; Roje-Bonacci, T. Interpretation of Groundwater Level Monitoring Results in Karst Aquifers: Examples from the Dinaric Karst. Hydrol. Processes 2000, 14, 2423–2438. [Google Scholar] [CrossRef]
- Andrić, I.; Bonacci, O.; Jukić, B. Rezultati Najnovijih Hidroloških i Geomorfoloških Istraživanja Crvenog Jezera Kod Imotskog. Hrvat. Vode 2013, 21, 344–348. [Google Scholar]
- Andrić, I.; Bonacci, O.; Jukić, B. Hidrološka Mjerenja Na Crvenom Jezeru u Razdoblju Od 28. Rujna 2013. Do 10. Rujna 2015. Hrvat. Vode 2017, 25, 253–258. [Google Scholar]
- Pérez-Bielsa, C.; Lambán, L.J.; Plata, J.L.; Rubio, F.M.; Soto, R. Characterization of a Karstic Aquifer Using Magnetic Resonance Sounding and Electrical Resistivity Tomography: A Case-Study of Estaña Lakes (Northern Spain). Hydrogeol. J. 2012, 20, 1045–1059. [Google Scholar] [CrossRef]
- Tallaksen, L.M. A Review of Baseflow Recession Analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Basha, H.A. Flow Recession Equations for Karst Systems. Water Resour. Res. 2020, 56, e2020WR027384. [Google Scholar] [CrossRef]
- Zdilar, S. Reljef Zavale Imotskog Polja i Njegovo Geoekološko Vrednovanje; Augustini: Zagreb, Croatia, 2001. [Google Scholar]
- Dragicevic, I.; Prelogovic, E.; Vlado, K.U.K.; Buljan, R. Recent Tectonic Activity in the Imotsko Polje Area. Geol. Croat. 1999, 52, 191–196. [Google Scholar] [CrossRef]
- Pahernik, M. Prostorna Gustoća Ponikava Na Području Republike Hrvatske. Hrvat. Geogr. Glas. 2012, 74, 5–26. [Google Scholar] [CrossRef][Green Version]
- Katastar Speleoloških Objekata Republike Hrvatske. Available online: https://crospeleo.mingor.hr (accessed on 1 December 2021).
- Šegota, T.; Filipčić, A. Köppenova Podjela Klima i Hrvatsko Nazivlje. Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef][Green Version]
- Bonacci, O.; Roje-Bonacci, T. Water Losses from the Ričice Reservoir Built in the Dinaric Karst. Eng. Geol. 2008, 99, 121–127. [Google Scholar] [CrossRef]
- The MathWorks, Inc. About Identified Nonlinear Models. Available online: https://www.mathworks.com/help/ident/ug/about-nonlinear-model-identification.html (accessed on 1 December 2021).
- Ojha, A.K.; Mallick, D.; Mallick, C. Existence and Global Logarithmic Stability of Impulsive Neural Networks with Time Delay. arXiv 2010, arXiv:1002.1164. [Google Scholar]
- Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. In Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 23–42. [Google Scholar]
- Nathan, R.J.; McMahon, T.A. Evaluation of Automated Techniques for Base Flow and Recession Analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Fiorotto, V.; Caroni, E. A New Approach to Master Recession Curve Analysis. Hydrol. Sci. J. 2013, 58, 966–975. [Google Scholar] [CrossRef][Green Version]
- Toebes, C.; Morrissey, W.B.; Shorter, R.; Hendy, M. Base-Flow-Recession Curves. Handbook of Hydrological Procedures: Procedure No 8; A.R. Shearer, Government Printer: Wellington, New Zeland, 1969. [Google Scholar]
- Sujono, J.; Shikasho, S.; Hiramatsu, K. A Comparison of Techniques for Hydrograph Recession Analysis. Hydrol. Processes 2004, 18, 403–413. [Google Scholar] [CrossRef]
- Posavec, K.; Parlov, J.; Nakić, Z. Fully Automated Objective-Based Method for Master Recession Curve Separation. Ground Water 2010, 48, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Posavec, K.; Bacani, A.; Nakic, Z. A Visual Basic Spreadsheet Macro for Recession Curve Analysis. Ground Water 2006, 44, 764–767. [Google Scholar] [CrossRef]
- Petras, I. An Approach to the Mathematical Expression of Recession Curves. Water SA 1986, 12, 145–149. [Google Scholar]
- Denić-Jukić, V.; Lozić, A.; Jukić, D. An Application of Correlation and Spectral Analysis in Hydrological Study of Neighboring Karst Springs. Water 2020, 12, 3570. [Google Scholar] [CrossRef]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of Correlation and Spectral Analyses to the Regional Study of a Large Karst Aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Mangin, A. Pour Une Meilleure Connaissance Des Systèmes Hydrologiques à Partir Des Analyses Corrélatoire et Spectrale. J. Hydrol. 1984, 67, 25–43. [Google Scholar] [CrossRef]
- Padilla, A.; Pulido-Bosch, A. Study of Hydrographs of Karstic Aquifers by Means of Correlation and Cross-Spectral Analysis. J. Hydrol. 1995, 168, 73–89. [Google Scholar] [CrossRef]
- Chatfield, C. The Analysis of Time Series: An Introduction, 6th ed.; Chapman and Hall/CRC: New York, NY, USA, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrsalović, A.; Andrić, I.; Buzjak, N.; Bonacci, O. Karst Lake’s Dynamics Analysis as a Tool for Aquifer Characterisation at Field Scale, Example of Cryptodepression—Red Lake in Croatia. Water 2022, 14, 830. https://doi.org/10.3390/w14050830
Vrsalović A, Andrić I, Buzjak N, Bonacci O. Karst Lake’s Dynamics Analysis as a Tool for Aquifer Characterisation at Field Scale, Example of Cryptodepression—Red Lake in Croatia. Water. 2022; 14(5):830. https://doi.org/10.3390/w14050830
Chicago/Turabian StyleVrsalović, Adrijana, Ivo Andrić, Nenad Buzjak, and Ognjen Bonacci. 2022. "Karst Lake’s Dynamics Analysis as a Tool for Aquifer Characterisation at Field Scale, Example of Cryptodepression—Red Lake in Croatia" Water 14, no. 5: 830. https://doi.org/10.3390/w14050830