Development of Method for Assessing Water Footprint Sustainability
Abstract
:1. Introduction
2. Methods
2.1. The Blue WF Assessment Framework
2.2. Blue WF Accounting Model
2.3. Blue WF Sustainability Assessment
3. Case Study
3.1. The Ningdong Base
3.2. Blue WF Accounting for the Products
3.3. Validation of the Accounting Model
3.4. Blue WF Sustainability Assessment
3.4.1. Standards and Norms
3.4.2. Blue WF under General Standard and the BPT
3.4.3. Blue WF Sustainability Indicators
4. Discussion
4.1. Volumetric WF versus Impacted-Oriented WF
4.2. Improve the Sustainability
4.3. Enhance the Life-Cycle Thinking for Water Management
4.4. Establishment of National WF Benchmarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Lian, J.; Bin, L.; Hua, K.; Xu, K.; Chan, H.Y. Water Price Prediction for Increasing Market Efficiency Using Random Forest Regression: A Case Study in the Western United States. Water 2019, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Brunner, M.I.; Zappa, M.; Stähli, M. Scale matters: Effects of temporal and spatial data resolution on water scarcity assessments. Adv. Water Resour. 2019, 123, 134–144. [Google Scholar] [CrossRef]
- Schwab, K. The Global Competitiveness Report 2019; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- Ding, N.; Liu, J.; Yang, J.; Lu, B. Water footprints of energy sources in China: Exploring options to improve water efficiency. J. Clean. Prod. 2018, 174, 1021–1031. [Google Scholar] [CrossRef]
- IEA. Water Energy Nexus; International Energy Agency: Paris, France, 2016. [Google Scholar]
- NDRC. Energy Production and Consumption Revolution Strategy (2016–2030); National Development and Reform Commission, PRC: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Han, S.; Chen, H.; Long, R.; Cui, X. Peak coal in China: A literature review. Resour. Conserv. Recycl. 2018, 129, 293–306. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, D. China’s crude oil futures: Introduction and some stylized facts. Financ. Res. Lett. 2019, 28, 376–380. [Google Scholar] [CrossRef]
- Guo, M.; Xu, Y. Coal-to-liquids projects in China under water and carbon constraints. Energy Policy 2018, 117, 58–65. [Google Scholar] [CrossRef]
- Xu, Z.; Lian, J.; Zhang, J.; Bin, L. Investigating and optimizing the water footprint in a typical coal energy and chemical base of China. Sci. Total Environ. 2020, 727, 138781. [Google Scholar] [CrossRef]
- Hoekstra, A.; Hung, P.Q. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Water Sci. Technol. 2002, 49, 203–209. [Google Scholar]
- Chapagain, A.K. Water Footprint: State of the Art: What, Why, and How? In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 153–163. [Google Scholar]
- Ma, X.; Yang, D.; Shen, X.; Zhai, Y.; Zhang, R.; Hong, J. How much water is required for coal power generation: An analysis of gray and blue water footprints. Sci. Total Environ. 2018, 636, 547–557. [Google Scholar] [CrossRef]
- ISO 14040:2006(E); Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Hoekstra, A.Y.; Gerbens-Leenes, W.; van der Meer, T.H. Reply to Pfister and Hellweg: Water footprint accounting, impact assessment, and life-cycle assessment. Proc. Natl. Acad. Sci. USA 2009, 106, E114. [Google Scholar] [CrossRef] [Green Version]
- Pfister, S.; Hellweg, S. The water “shoesize” vs. footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, E93–E94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridoutt, B.G.; Huang, J. Environmental relevance--the key to understanding water footprints. Proc. Natl. Acad. Sci. USA 2012, 109, E1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M. Reply to Ridoutt and Huang: From water footprint assessment to policy. Proc. Natl. Acad. Sci. USA 2012, 109, E1425. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Finkbeiner, M. Methodological Challenges in Volumetric and Impact-Oriented Water Footprints. J. Ind. Ecol. 2012, 17, 79–89. [Google Scholar] [CrossRef]
- Pfister, S.; Ridoutt, B.G. Water footprint: Pitfalls on common ground. Environ. Sci. Technol. 2014, 48, 4. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M. The scarcity-weighted water footprint provides unreliable water sustainability scoring. Sci. Total Environ. 2021, 756, 143992. [Google Scholar] [CrossRef]
- Pfister, S.; Boulay, A.M.; Berger, M.; Hadjikakou, M.; Motoshita, M.; Hess, T.; Ridoutt, B.; Weinzettel, J.; Scherer, L.; Doll, P.; et al. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”. Ecol. Indic. 2017, 72, 352–359. [Google Scholar] [CrossRef]
- Xu, M.; Li, C.; Wang, X.; Cai, Y.; Yue, W. Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian City, China. J. Clean. Prod. 2018, 176, 1283–1291. [Google Scholar] [CrossRef]
- Ye, Q.; Li, Y.; Zhuo; Zhang, W.; Xiong, W.; Wang, C.; Wang, P. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Water Res. 2018, 129, 264–276. [Google Scholar] [CrossRef]
- D’Ambrosio, E.; Gentile, F.; De Girolamo, A.M. Assessing the sustainability in water use at the basin scale through water footprint indicators. J. Clean. Prod. 2020, 244, 118847. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Li, Z.; You, H.; Aviso, K.B.; Tan, R.R.; Jia, X. Water footprint sustainability assessment for the chemical sector at the regional level. Resour. Conserv. Recycl. 2019, 142, 69–77. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Q.; Zhu, S.; Song, Y.; Zhang, D. Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels. Resour. Conserv. Recycl. 2019, 144, 74–81. [Google Scholar] [CrossRef]
- Hawkins, T.; Hendrickson, C.; Higgins, C.; Matthews, H.; Suh, S. A Mixed-Unit Input-Output Model for Environmental Life-Cycle Assessment and Material Flow Analysis. Environ. Sci. Technol. 2007, 41, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M.; Moran, D.; Bhaduri, A.; Kanemoto, K.; Bekchanov, M.; Geschke, A.; Foran, B. International trade of scarce water. Ecol. Econ. 2013, 94, 78–85. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Hadjikakou, M.; Nolan, M.; Bryan, B.A. From Water-Use to Water-Scarcity Footprinting in Environmentally Extended Input-Output Analysis. Environ. Sci. Technol. 2018, 52, 6761–6770. [Google Scholar] [CrossRef]
- Chang, Y.; Huang, Z.; Ries, R.J.; Masanet, E. The embodied air pollutant emissions and water footprints of buildings in China: A quantification using disaggregated input–output life cycle inventory model. J. Clean. Prod. 2016, 113, 274–284. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H.; Shi, M. Analyses of water footprint of Beijing in an interregional input–output framework. Ecol. Econ. 2011, 70, 2494–2502. [Google Scholar] [CrossRef]
- Zhang, C.; Anadon, L.D. Life cycle water use of energy production and its environmental impacts in China. Environ. Sci. Technol. 2013, 47, 14459–14467. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Ma, Y.; Li, X. Regional water footprint evaluation and trend analysis of China—based on interregional input–output model. J. Clean. Prod. 2016, 112, 4674–4682. [Google Scholar] [CrossRef]
- Bogra, S.; Bakshi, B.R.; Mathur, R. A Water-Withdrawal Input-Output Model of the Indian Economy. Environ. Sci. Technol. 2016, 50, 1313–1321. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Huang, M. Water Footprint and Virtual Water Accounting for China Using a Multi-Regional Input-Output Model. Water 2018, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: A consumption based approach. Appl. Geogr. 2012, 32, 691–701. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Wang, X.; Tan, Q. Spatial analysis of dual-scale water stresses based on water footprint accounting in the Haihe River Basin, China. Ecol. Indic. 2018, 92, 254–267. [Google Scholar] [CrossRef]
- Mao, X.; Yang, Z. Ecological network analysis for virtual water trade system: A case study for the Baiyangdian Basin in Northern China. Ecol. Inf. 2012, 10, 17–24. [Google Scholar] [CrossRef]
- Yin, J.; Wang, H.; Cai, Y. Water Footprint Calculation on the Basis of Input–Output Analysis and a Biproportional Algorithm: A Case Study for the Yellow River Basin, China. Water 2016, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impact of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.C.; Huang, J.; Ridoutt, B.G.; Liu, J.J.; Chen, F. LCA-based product water footprinting and case study. J. Nat. Resour. 2013, 28, 873–880. (In Chinese) [Google Scholar]
- YREC. Report on Water Resources Assessment for NingdongWater Supply; Yellow River Engieering Consulting Co., Ltd.: Zhengzhou, China, 2017. (In Chinese) [Google Scholar]
- GB/T 18916.1-2012Norm of Water Intake—Part 1: Fossil Fire Power Production; SAMR: Beijing, China, 2012. (In Chinese)
- The Norm of Energy Consumption per Unit Product for Modern Coal Chemical Industry; SAMR: Beijing, China, 2020. Available online: http://std.samr.gov.cn/gb (accessed on 25 December 2021). (In Chinese)
- GB 30528-2014; The Norm of Energy Consumption per Unit Products of Polyvinyl Alcohol. SAMR: Beijing, China, 2014. (In Chinese)
- GB 29444-2012; The Norm of the Energy Consumption per Unit Product of Coal Undergrounding Mining. SAMR: Beijing, China, 2012. (In Chinese)
- GB 21343-2015; Norm of the Energy Consumption per Unit Product of Calcium Carbide. SAMR: Beijing, China, 2015. (In Chinese)
- GB 30529-2014; The Norm of the Energy Consumption per Unit Product of Vinyl Acetate. SAMR: Beijing, China, 2014. (In Chinese)
- GB 31535-2015; The Norm of the Energy Consumption per Unit Product of Dimethylether. SAMR: Beijing, China, 2016. (In Chinese)
- GB 31824-2015; Norm of the Energy Consumption per Unit Product of 1,4-Butanediol. SAMR: Beijing, China, 2015. (In Chinese)
- GNHAR. Notice of Ningxia Hui Autonomous Region on the Revision of Industrial Water Quota; Government of Ningxia Hui Autonomous Region, PRC: Yinchuan, China, 2020. (In Chinese)
- DWRN. Implementation Plan of Water Demand Control in Ningxia; Department of Water Resources of Ningxia Hui Autonomous Region, PRC: Yinchuan, China, 2020. (In Chinese) [Google Scholar]
- NDRC. National Water Conservation Action Plan; National Development and Reform Commission, PRC: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual—Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef] [Green Version]
Assessment Level | Indicator Values | Assessment Results |
---|---|---|
Product-level | WSSIp−1 > 1, WSSIp−2 > 1 | unsustainable |
WSSIp−1 ≤ 1, WSSIp−2 > 1 | sustainable | |
WSSIp−1 ≤ 1, WSSIp−2 ≤ 1 | advanced | |
Regional-level | WSRIp−1 > 1, WSRIp−2 > 1 | unsustainable |
WSRIp−1 ≤ 1, WSRIp−2 > 1 | sustainable | |
WSRIp−1 ≤ 1, WSRIp−2 ≤ 1 | advanced |
Indicators | Abbreviations | Measurement Units |
---|---|---|
Water footprint | WF | m3/t or m3/kWh |
Blue water footprint | Blue WF | m3/t or m3/kWh |
Water sustainability index at product level based on general standard | WSSIp−1 | unitless |
Water sustainability index at product level based on BPT | WSSIp−2 | unitless |
Water sustainability index at regional level based on general standard | WSRIp−1 | unitless |
Water sustainability index at regional level based on BPT | WSRIp−2 | unitless |
Overall sustainability of production in a industrial base | WSRIBase | unitless |
Product | Abbreviation | No. of Enterprises | No. of Projects | Total Capacity (104 ton/a) |
---|---|---|---|---|
Washed coal | COAL | 2 | 13 | 9000 |
Coal-fired electricity | ELEC | 10 | 15 | 15,660 (MW) |
Coal-to-liquid | CTL | 1 | 1 | 400 |
Coal-to-methanol | CTM | 3 | 4 | 175 |
Goal gas to methanol | CGTM | 2 | 2 | 45 |
Coke | COKE | 2 | 3 | 590 |
Goal gas to olefin | CGTO | 1 | 1 | 60 |
Methanol to olefin | MTO | 3 | 5 | 205 |
Dimethyl ether | DME | 1 | 1 | 21 |
Polyoxymethylene | POM | 2 | 2 | 11 |
Ammonia | NH3 | 2 | 2 | 55 |
Urea | UREA | 1 | 1 | 70 |
Calcium carbide | CaC2 | 1 | 1 | 115 |
Acetylene | ACET | 1 | 1 | 30 |
1,4-Butanediol | BDO | 1 | 1 | 20.8 |
Polytetrahydrofuran | PTMEG | 1 | 1 | 9.2 |
Acetic acid | ACA | 1 | 1 | 30 |
Vinyl acetate | VAC | 1 | 1 | 40 |
Polyvinyl alcohol | PVA | 1 | 1 | 10 |
Technical Coefficient Matrix | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Products | COAL | ELEC | CTL | CTM | CGTM | COKE | CGTO | MTO | DME | POM | NH3 | UREA | CaC2 | ACET | BDO | PTMEG | ACA | VAC | PVA |
COAL | 0 | 0.0003 | 2.230 | 1.926 | 0 | 1.175 | 2.960 | 5.10 | 2.12 | 2.00 | 1.61 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ELEC | 18.29 | 0.05 | 1078.37 | 363.68 | 151.95 | 44.06 | 848.61 | 2680.0 | 80.0 | 990.0 | 505.46 | 78.52 | 3262.2 | 206.96 | 918.49 | 869.41 | 91.63 | 162.15 | 696.20 |
CTL | 0.0001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CTM | 0 | 0 | 0 | 0 | 0 | 0 | 0.253 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.215 | 0.057 | 0.538 | 0 | 0.873 |
CGTM | 0 | 0 | 0 | 0 | 0 | 0 | 0.253 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.215 | 0.057 | 0.538 | 0 | 0.873 |
COKE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.686 | 0 | 0 | 0 | 0 | 0 | 0 |
CGTO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MTO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DME | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
POM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NH3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.571 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
UREA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CaC2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.813 | 0 | 0 | 0 | 0 | 0 |
ACET | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.282 | 0 | 0 | 0.325 | 0 |
BDO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.490 | 0 | 0 | 0 |
PTMEG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ACA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.710 | 0 |
VAC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.819 |
PVA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Direct water consumption vector | |||||||||||||||||||
Freshwater | 0.122 | 0.00022 | 9.55 | 11.13 | 4.19 | 1.05 | 15.91 | 14.05 | 7.30 | 5.76 | 10.89 | 2.13 | 0.81 | 4.57 | 18.40 | 6.74 | 1.93 | 2.83 | 16.53 |
Cooling System | Freshwater Consumption for Install Unit Capacity (m3/MWh) | ||
---|---|---|---|
<300 MW | 300 MW~500 MW | ≥600 MW | |
Circulating | 3.20 | 2.75 | 2.40 |
DC cooling | 0.79 | 0.54 | 0.46 |
Air cooling | 0.95 | 0.63 | 0.53 |
Level | Coal consumption for unit of 600 MW (tce/MWh) | ||
Subcritical | Supercritical | Ultra-supercritical | |
Standard | 0.319 | 0.306 | 0.293 |
Advanced | 0.313 | 0.298 | 0.288 |
Product | Freshwater Consumption (m3/t) | Energy Consumption (tce/t) | ||
---|---|---|---|---|
General | Advanced | General | Advanced | |
COAL | 0.34 | 0.26 | 0.007 | 0.003 |
CTL | 10 | 7 | 2.5 * | 2.2 * |
CTM | 15 | 9 | 2.2 * | 1.8 * |
CGTM | 15 | 9 | 1.65 * | 1.3 * |
COKE | 1.4 | 1.2 | 0.155 | 0.127 |
MTO | 15 | 12 | 4.5 | 3.7 |
DME | 11 | -- | 1.225 | 1.146 |
POM | 24 | -- | 2.8 * | 2.1 * |
NH3 | 14 | 10 | 4 | 3 |
CaC2 | 1.1 | -- | 3.2 * | 3.05 * |
ACET | 2.1 | -- | -- | -- |
BDO | 23.8 | -- | 1.5 | 0.95 |
ACA | 3.2 | -- | 0.429 | 0.3 |
VAC | 8 | -- | 0.565 | 0.41 |
PVA | 10.9 | -- | 2.75 | 2.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Lian, J.; Wang, R.; Qiu, Y.; Song, T.; Hua, K. Development of Method for Assessing Water Footprint Sustainability. Water 2022, 14, 694. https://doi.org/10.3390/w14050694
Xu Z, Lian J, Wang R, Qiu Y, Song T, Hua K. Development of Method for Assessing Water Footprint Sustainability. Water. 2022; 14(5):694. https://doi.org/10.3390/w14050694
Chicago/Turabian StyleXu, Ziyao, Jijian Lian, Ran Wang, Ying Qiu, Tianhua Song, and Kaixun Hua. 2022. "Development of Method for Assessing Water Footprint Sustainability" Water 14, no. 5: 694. https://doi.org/10.3390/w14050694
APA StyleXu, Z., Lian, J., Wang, R., Qiu, Y., Song, T., & Hua, K. (2022). Development of Method for Assessing Water Footprint Sustainability. Water, 14(5), 694. https://doi.org/10.3390/w14050694