Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan
Abstract
:1. Introduction
2. Study Area and Dataset
3. Materials and Methods
3.1. Trend Detection
3.2. Serial Correlation Effect
3.3. Mann–Kendal Test for Trend Detection
3.4. Sen’s Slope
4. Results
4.1. Variability and Trend Detection in Magnitude of High Flows
4.2. Variability and Trend Detection in Timing of High Flows
4.3. Variability and Trend Detection in Magnitude of Low Flows
4.3.1. Trends in 1-Day Low Flows
4.3.2. Trends in 7-Day Low Flows
4.3.3. Trends in 15-Day Low Flows
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Durodola, O.S. The Impact of Climate Change Induced Extreme Events on Agriculture and Food Security: A Review on Nigeria. Agric. Sci. 2019, 10, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Raikes, J.; Smith, T.F.; Jacobson, C.; Baldwin, C. Pre-disaster planning and preparedness for floods and droughts: A systematic review. Int. J. Disaster Risk Reduct. 2019, 38, 101–207. [Google Scholar] [CrossRef]
- Snyder, K.A.; Evers, L.; Chambers, J.C.; Dunham, J.; Bradford, J.B.; Loik, M.E. Effects of changing climate on the hydrological cycle in cold desert ecosystems of the Great Basin and Columbia Plateau. Rangel. Ecol. Manag. 2019, 72, 1–12. [Google Scholar] [CrossRef]
- Sy, S.; Quesada, B. Anthropogenic land cover change impact on climate extremes during the 21st century. Environ. Res. Lett. 2020, 15, 034002. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. Climate Change and Water. In Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Archer, D.R.; Fowler, H.J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 2004, 8, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Akbar, R.; Short Gianotti, D.J.; Salvucci, G.D.; Entekhabi, D. Mapped hydroclimatology of evapotranspiration and drainage runoff using SMAP brightness temperature observations and precipitation information. Water Res. Res. 2019, 55, 3391–3413. [Google Scholar] [CrossRef]
- Abbas, S.; Mayo, Z.A. Impact of temperature and rainfall on rice production in Punjab, Pakistan. Environ. Dev. Sustain. 2020, 23, 1–23. [Google Scholar] [CrossRef]
- Uprety, M.; Ochoa-Tocachi, B.F.; Paul, J.D.; Regmi, S.; Buytaert, W. Improving water resources management using participatory monitoring in a remote mountainous region of Nepal. J. Hydrol. Reg. Stud. 2019, 23, 100604. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Su, X.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Bin Ismail, T.; Wang, X.J. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Eriksson, M.; Jianchu, X.U.; Shrestha, A.B.; Vaidya, R.A.; Nepal, S.; Sandstörm, K. The Changing Himalayas: Impact of Climate Change on Water Resources and Livelihoods in the Greater Himalayas; ICIMOD: Kathmandu, Nepal, 2009. [Google Scholar]
- Hewitt, K. Geomorphic hazards in mountain environments. In Mountain Geomorphology; Owens, P.N., Slaymaker, O., Eds.; Arnold: London, UK, 2004; pp. 187–218. [Google Scholar]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 2010, 115, F03019. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, K.; Gilbert, A.; Schuler, T.V.; Malthe-Sørenssen, A. Rate-and-state friction explains glacier surge propagation. Nat. Commun. 2019, 10, 2823. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Hewitt, K. The karakoram anomaly, glacier expansion and the elevation effect Karakorum Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Archer, D.R. Conflicting Signals of Climate Change in the Upper Indus Basin. J. Clim. 2006, 19, 4276–4292. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Archer, D.R. Hydro-climatological variability in the Upper Indus Basin and implications for water resources. In Regional Hydrological Impacts of Climatic Change—Impact Assessment and Decision Making; Wagener, T., Franks, S.W., Eds.; IAHS Publication: Oxfordshire, UK, 2005; Volume 295, pp. 131–138. [Google Scholar]
- Archer, D. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 2003, 274, 198–210. [Google Scholar] [CrossRef]
- Sharif, M.; Archer, D.; Fowler, H.; Forsythe, N. Trends in timing and magnitude of flow in the Upper Indus Basin. Hydrol. Earth Syst. Sci. 2013, 17, 1503–1516. [Google Scholar] [CrossRef] [Green Version]
- Ahmadalipour, A.; Moradkhani, H.; Demirel, M.C. A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. J. Hydrol. 2017, 553, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Ahmadalipour, A.; Moradkhani, H. A data-driven analysis of flash flood hazard, fatalities, and damages over the CONUS during 1996–2017. J. Hydrol. 2019, 578, 106–124. [Google Scholar] [CrossRef]
- Latif, Y.; Ma, Y.; Ma, W.; Muhammad, S.; Muhammad, Y. Snowmelt runoff simulation during early 21st century using hydrological modelling in the snow-fed terrain of Gilgit river basin (Pakistan). Advances in sustainable and environmental hydrology, hydrogeology, hydrochemistry and water resources (chapter 18). In Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Hammamet, Tunisia, 12–15 November 2018. [Google Scholar]
- Do, H.X.; Zhao, F.; Westra, S.; Leonard, M.; Gudmundsson, L.; Boulange, J.E.S.; Müller Schmied, H. Historical and future changes in global flood magnitude–evidence from a model-observation investigation. Hydrol. Earth Syst. Sci. 2020, 24, 1543–1564. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, N.; Archer, D.R.; Pritchard, D.; Fowler, H. A Hydrological Perspective on Interpretation of Available Climate Projections for the Upper Indus Basin. In Indus River Basin; Elsevier: Amsterdam, The Netherlands, 2019; pp. 159–179. [Google Scholar]
- Yaseen, M.; Ahmad, I.; Guo, J.; Azam, M.I.; Latif, Y. Spatiotemporal Variability in the Hydrometeorological Time-Series over Upper Indus River Basin of Pakistan. Adv. Meteorol. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Latif, Y.; Ma, Y.; Ma, W. Climatic trends variability and concerning flow regime of Upper Indus Basin Jehlum, and Kabul River Basins. Theor. Appl. Climatol. 2021, 144, 447–468. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.J. Decadal Climate Cycles and Declining Columbia River Salmon. In Sustainable Fisheries Management: Pacific Salmon; CRC Press LLC: New York, NY, USA, 2020; pp. 467–484. [Google Scholar]
- Frederick, S.E.; Woodhouse, C.A. A multi century Perspective on the Relative Influence of Seasonal Precipitation on Streamflow in the Missouri River Headwaters. Water Resour. Res. 2020, 56, e2019WR025756. [Google Scholar] [CrossRef]
- Bilal, H.; Chamhuri, S.; Mokhtar, M.B.; Kanniah, K.D. Recent snow cover variation in the Upper Indus Basin of Gilgit Baltistan, Hindukush Karakoram Himalaya. J. Mt. Sci. 2019, 16, 296–308. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S.; Yaseen, M.; Mayo, Z.A.; Zainab, M.; Mahmood, M.J.; Raza, H. Impact assessment of socioeconomic factors on dimensions of environmental degradation in Pakistan. SN Appl. Sci. 2020, 2, 468. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Shirazi, S.A.; Qureshi, S. SWOT analysis for socio-ecological landscape variation as a precursor to the management of the mountainous Kanshi watershed, Salt Range of Pakistan. Int. J. Sustain. Dev. World Ecol. 2018, 25, 351–361. [Google Scholar] [CrossRef]
- Anwar, A.A.; Bhatti, M.T. Pakistan’s water apportionment Accord of 1991: 25 years and beyond. J. Water Resour. Plan. Manag. 2018, 144, 05017015. [Google Scholar] [CrossRef] [Green Version]
- Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of water resources management in the Indus Basin under changing climatic and socio-economic conditions. Hydrol. Earth Syst. Sci. 2010, 14, 1669–1680. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Höök, T.O.; Foley, C.J.; Collingsworth, P.; Dorworth, L.; Fisher, B.; Hoverman, J.T.; LaRue, E.; Pyron, M.; Tank, J. An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA. Clim. Change 2019, 163, 1–20. [Google Scholar] [CrossRef]
- Carling, P.A.; Huang, H.Q.; Su, T.; Hornby, D. Flow structure in large bedrock-channels: The example of macroturbulent rapids, lower Mekong River, Southeast Asia. Earth Surf. Process. Landf. 2019, 44, 843–860. [Google Scholar] [CrossRef]
- FFC (2010) Ministry of Water and Power of Pakistan. Annual Flood Report 2010, Islamabad, Pakistan, WAPDA.Shakir, A.S.; Rehman, H.; Ehsan, S. Climate Change Impact on River Flows in Chitral Watershed. Pak. J. Eng. Appl. Sci. 2010, 7, 12–22. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions. Water Resour. Manag. 2020, 34, 1–15. [Google Scholar] [CrossRef]
- Garee, K.; Chen, X.; Bao, A.; Wang, Y.; Meng, F. Hydrological modeling of the upper Indus basin: A case study from a high-altitude glacierized catchment Hunza. Water 2017, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Tarar, Z.R.; Ahmad, S.R.; Ahmad, I.; Majid, Z. Detection of sediment trends using wavelet transforms in the upper Indus River. Water 2018, 10, 918. [Google Scholar] [CrossRef] [Green Version]
- Sobkowiak, L.; Perz, A.; Wrzesiński, D.; Faiz, M.A. Estimation of the River Flow Synchronicity in the Upper Indus River Basin Using Copula Functions. Sustainability 2020, 12, 5122. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Khan, A. A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. J. Hydrol. 2014, 509, 549–572. [Google Scholar] [CrossRef]
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush—Karakorum—Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Bhutiyani, M.R.; Vishwas, S.K.; Pawar, N.J. Changing streamflow patterns in the rivers of northwestern Himalaya: Implications of global warming in the 20th century. Curr. Sci. 2008, 95, 618–626. [Google Scholar]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ahmad, B. Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2821–2860. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of regression coefficients based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Aziz, O.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the 20th century. Clim. Chang. 2007, 85, 159–177. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The influence of serial correlation on the Mann-Whitney test for detecting a shift in median. Adv. Water Resour. 2002, 25, 325–333. [Google Scholar] [CrossRef]
- Kulkarni, A.; von Storch, H. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z. 1995, 4, 82–85. [Google Scholar] [CrossRef]
- Von Storch, H.; Navarra, A. Analysis of Climate Variability: Applications of Statistical Techniques; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. Patterns of trend in Canadian streamflow. In Proceedings of the 58th Annual Eastern Snow Conference, Stowe, VT, USA, 5–7 June 2002. [Google Scholar]
- Tabari, H.; Talaee, P.H.; Ezani, A.; Some’e, S.B. Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theor. Appl. Climatol. 2012, 109, 95–108. [Google Scholar] [CrossRef]
- Forsythe, N.; Fowler, H.J.; Li, X.F.; Blenkinsop, S.; Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang. 2017, 7, 664–670. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.; Shrestha, A.B.; Bierkens, M.F. Climate change impacts on the upper indus hydrology: Sources, shifts and extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.S.; Ahmad, I.; Khan, N.M.; Zhang, F.; Bilal, A.; Guo, J. Streamflow variations in monthly, seasonal, annual and extreme values using MannKendall, Spearmen’s Rho and innovative trend analysis. Water Resour. Manag. 2021, 35, 243–261. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Booij, M.J.; Ceribasi, G.; Bhat, M.S.; Ceyhunlu, A.I.; Ahmed, A. Changes in monthly streamflow in the Hindukush–Karakoram–Himalaya Region of Pakistan using innovative polygon trend analysis. Stoch. Environ. Res. Risk Assess. 2021, 1–20. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Wanders, N.; Lutz, A.; Shea, J.M.; Bierkens, M.F.P. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol Earth Syst. Sci. 2015, 19, 4673–4687. [Google Scholar] [CrossRef] [Green Version]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of NasheWatershed, Ethiopia. Water 2021, 13, 2372. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in NasheWatershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Latif, Y.; Ma, Y.; Ma, W.; Muhammad, S.; Adnan, M.; Yaseen, M.; Fealy, R. Differentiating Snow and Glacier Melt Contribution to Runoff in the Gilgit River Basin via Degree-Day Modelling Approach. Atmosphere 2020, 11, 1023. [Google Scholar] [CrossRef]
- Latif, Y.; Yaoming, M.; Yaseen, M.; Muhammad, S.; Wazir, M.A. Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan. Theor. Appl. Clim. 2020, 139, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Latif, Y.; Yaoming, M.; Yaseen, M. Spatial Analysis of Precipitation Time Series over the Upper Indus Basin. Theor. Appl. Clim. 2018, 131, 761–775. [Google Scholar] [CrossRef] [Green Version]
Sr. | Station | Lat | Lon | River | Basin | Area | Mean Annual Low Flows | Mean Annual High Flows | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | (dd) | (dd) | (km2) | 1-Day | 7-Day | 15-Day | Mean | Highest | Date | |||
1 | Naran | 34.9 | 73.7 | Kunhar | Jhelum | 1036 | 6.3 | 10.4 | 13.4 | |||
2 | G. Habibullah | 34.4 | 73.4 | Kunhar | Jhelum | 2355 | 18.0 | 22.2 | 25.2 | 103 | 447 | 6-Jul |
3 | Muzaffarabad | 34.4 | 73.5 | Neelum | Jhelum | 7275 | 47.5 | 45.8 | 60.2 | 332 | 1417 | 14-Jun |
4 | Chinari | 34.2 | 73.8 | Jhelum | Jhelum | 13,598 | 0.2 | 48.7 | 57.4 | |||
5 | Domel | 34.4 | 73.5 | Jhelum | Jhelum | 14,504 | 56.6 | 52.6 | 61.1 | |||
6 | Kohala | 34.1 | 73.5 | Jhelum | Jhelum | 24,890 | 146.3 | 126.3 | 159.1 | |||
7 | Azad Pattan | 33.7 | 73.6 | Jhelum | Jhelum | 26,485 | 155.2 | 133.0 | 170.4 | 1207 | 3155 | 14-Jun |
8 | Kotli | 33.5 | 73.9 | Poonch | Jhelum | 3238 | 19.8 | 21.0 | 30.4 | 126 | 1780 | 1-Jul |
9 | Palote | 33.2 | 73.4 | Kanshi | Jhelum | 1111 | 0.3 | 5.2 | 2.6 | 6 | 323 | 27-Jul |
10 | Kharmong | 35.2 | 75.9 | Indus | Indus | 67,858 | 93.0 | 80.6 | 122.3 | |||
11 | Yogo | 35.2 | 76.1 | Shyok | Indus | 33,670 | 37.8 | 36.5 | 67.2 | 358 | 2225 | 3-Aug |
12 | Shigar | 35.4 | 75.7 | Shigar | Indus | 6610 | 15.1 | 21.4 | 29.7 | 209 | 1108 | 29-Jul |
13 | Kachura | 35.5 | 75.4 | Indus | Indus | 112,665 | 176.6 | 151.4 | 239.7 | |||
14 | Gilgit | 35.9 | 74.3 | Gilgit | Indus | 12,095 | 62.4 | 58.2 | 84.8 | 309 | 1162 | 27-Jul |
15 | Dainyor Br. | 35.9 | 74.4 | Hunza | Indus | 13,157 | 37.2 | 36.0 | 59.1 | 325 | 1494 | 2-Aug |
16 | Alam Br. | 35.8 | 74.6 | Gilgit | Indus | 26,159 | 89.8 | 75.4 | 143.7 | |||
17 | Bunji | 35.7 | 74.6 | Indus | Indus | 142,709 | 306.7 | 214.6 | 344.6 | |||
18 | Doyain | 35.5 | 74.7 | Astore | Indus | 4040 | 30.7 | 27.3 | 36.6 | 139 | 635 | 29-Jun |
19 | Shatial Br. | 35.5 | 73.6 | Indus | Indus | 150,220 | 350.9 | 279.6 | 489.5 | |||
20 | Karora | 34.9 | 72.8 | Gorband | Indus | 635 | 4.4 | 11.0 | 7.2 | 18 | 137 | 3-Jun |
21 | Besham Qila | 34.9 | 72.9 | Indus | Indus | 162,393 | 414.2 | 357.0 | 524.4 | 2401 | 10,810 | 22-Jul |
22 | Daggar | 34.5 | 72.5 | Brandu | Indus | 598 | 2.8 | 8.0 | 5.0 | 6 | 98 | 30-Jun |
23 | Phulra | 34.3 | 73.1 | Siran | Indus | 1057 | 3.5 | 8.7 | 6.1 | 20 | 267 | 22-Jun |
24 | Kalam | 35.5 | 72.6 | Swat | Kabul | 2020 | 12.2 | 15.3 | 18.2 | |||
25 | Chakdara | 34.6 | 72 | Swat | Kabul | 5776 | 36.1 | 37.4 | 47.4 | 188 | 822 | 29-Jun |
26 | Chitral | 35.9 | 71.8 | Chitral | Kabul | 11,396 | 59.4 | 54.3 | 85.6 | 276 | 1091 | 28-Jul |
27 | Jhansi Post | 33.9 | 71.4 | Bara | Kabul | 1847 | 1.4 | 6.3 | 3.3 | |||
28 | Nowshera | 34 | 72 | Kabul | Kabul | 88,578 | 151.6 | 152.1 | 180.9 | 837 | 3218 | 4-Jul |
29 | Gurriala | 33.7 | 72.3 | Haro | Indus | 3056 | 7.2 | 11.6 | 10.2 | 26 | 600 | 27-Jul |
30 | Khairabad | 33.9 | 72.2 | Indus | Indus | 252,525 | 491.2 | 480.2 | 976.9 | |||
31 | Thal | 33.4 | 71.5 | Kurram | Indus | 5543 | 7.6 | 12.3 | 10.8 | 25 | 232 | 5-Jul |
32 | Chirah | 33.7 | 73.3 | Soan | Indus | 326 | 0.1 | 4.9 | 2.2 | |||
33 | Chahan | 33.4 | 72.9 | Sil | Indus | 241 | 0.1 | 5.0 | 2.1 | |||
34 | Dhok Pathan | 33.1 | 72.3 | Soan | Indus | 6475 | 3.6 | 8.6 | 9.2 | 41 | 1139 | 21-July |
35 | Massan | 33 | 71.7 | Indus | Indus | 286,000 | 791.2 | 660.9 | 1317.4 | 3703 | 13,882 | 1-Aug |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, M.; Latif, Y.; Waseem, M.; Leta, M.K.; Abbas, S.; Akram Bhatti, H. Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan. Water 2022, 14, 337. https://doi.org/10.3390/w14030337
Yaseen M, Latif Y, Waseem M, Leta MK, Abbas S, Akram Bhatti H. Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan. Water. 2022; 14(3):337. https://doi.org/10.3390/w14030337
Chicago/Turabian StyleYaseen, Muhammad, Yasir Latif, Muhammad Waseem, Megersa Kebede Leta, Sohail Abbas, and Haris Akram Bhatti. 2022. "Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan" Water 14, no. 3: 337. https://doi.org/10.3390/w14030337
APA StyleYaseen, M., Latif, Y., Waseem, M., Leta, M. K., Abbas, S., & Akram Bhatti, H. (2022). Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan. Water, 14(3), 337. https://doi.org/10.3390/w14030337