Optimization of Aeration Rate—Low Cost but High Efficiency Operation of Aniline-Degrading Bioaugmentation Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactors’ Operation and Experimental Design
2.2. Synthetic Wastewater Composition
2.3. Chemical Analytical Methods
2.4. Microbial Community Analysis
3. Results and Discussion
3.1. Effects of Aeration Rates on Aniline Degradation
3.2. Removal Performances of Nitrogen under Different Aeration Rates
3.3. Microbial Community Characterization
3.3.1. Alpha Diversity of the Microbial Community
3.3.2. Microbial Community Structure at Phylum and Class Levels
3.3.3. Microbial Community Structure at Genus Levels
3.4. Variation of Key Functional Groups
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Zhou, Y.; Guo, S.; Wang, Z.; Wang, Q. Mineralization of High-Concentration Aqueous Aniline by Hybrid Process. Water 2022, 14, 630. [Google Scholar] [CrossRef]
- Szczepanik, B.; Słomkiewicz, P. Photodegradation of aniline in water in the presence of chemically activated halloysite. Appl. Clay Sci. 2016, 124, 31–38. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Leon, G.; Gomez, M.; Murcia, M.D.; Bernal, M.D.; Ortega, S. Polyamide nanofiltration membranes to remove aniline in aqueous solutions. Environ. Technol. 2014, 35, 1175–1181. [Google Scholar] [CrossRef]
- Ferreiro, C.; Villota, N.; Lombraña, J.; Rivero, M.; Zúñiga, V.; Rituerto, J. Analysis of a Hybrid Suspended-Supported Photocatalytic Reactor for the Treatment of Wastewater Containing Benzothiazole and Aniline. Water 2019, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Din, M.I.; Khalid, R.; Hussain, Z.; Najeeb, J.; Sahrif, A.; Intisar, A.; Ahmed, E. Critical review on the chemical reduction of nitroaniline. RSC Adv. 2020, 10, 19041–19058. [Google Scholar] [CrossRef] [PubMed]
- Sam, M.S.; Tiong, P.; Lintang, H.O.; Lee, S.L.; Yuliati, L. Mesoporous carbon nitride as a metal-free catalyst for the removal of aniline. RSC Adv. 2015, 5, 44578–44586. [Google Scholar] [CrossRef]
- Wen, Y.J.; Yang, Y.S.; Ren, H.J.; Du, X.Q.; Yang, X.Y.; Zhang, L.Y.; Wang, X.S. Chemical-biological hybrid reactive zones and their impact on biodiversity of remediation of the nitrobenzene and aniline contaminated groundwater. Chem. Eng. J. 2015, 280, 233–240. [Google Scholar] [CrossRef]
- Das, S.; Mishra, A.; Ghangrekar, M.M. Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell. Chem. Phys. Lett. 2020, 759, 137986. [Google Scholar] [CrossRef]
- Khan, M.J.; Das, S.; Vinayak, V.; Pant, D.; Ghangrekar, M.M. Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. Chemosphere 2022, 291, 132841. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Li, M.; Wang, H.; Li, Y.; Peng, H.; Feng, J. Microbial community and function evaluation in the start-up period of bioaugmented SBR fed with aniline wastewater. Bioresour. Technol. 2021, 319, 124148. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.; Shang, Y.; Yang, K. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor. Bioresour. Technol. 2016, 207, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Rial, D. Inhibition of selected bacterial growth by three hydrocarbons: Mathematical evaluation of toxicity using a toxicodynamic equation. Chemosphere 2014, 112, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Emtiazi, G.; Satarii, M.; Mazaherion, F. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Water Res. 2001, 35, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ni, J.; Ma, T.; Liu, T.; Zheng, M. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol. 2015, 183, 25–32. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, X.; Wei, S.; Ke, T.; Wang, P.; Chen, L. Synchronous degradation of phenol and aniline by Rhodococcus sp. strain PB-1entrapped in sodium alginate-bamboo charcoal-chitosan beads. Environ. Technol. 2021, 42, 4405–4414. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ying, C.; Fang, N.; Zhong, Y.; Zhao-Xiang, Z.; Yun, S. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01. Appl. Biochem. Biotech. 2017, 182, 41–54. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Li, M.; Sang, W.; Wang, Y.; Wu, L.; Yang, Y. Bioaugmentation of sequencing batch reactor for aniline treatment during start-up period: Investigation of microbial community structure of activated sludge. Chemosphere 2020, 243, 125426. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, Y.; Zhang, Q.; Zhang, W.; Li, M.; Feng, J.; Su, J.; He, J.; Zhong, M. Control of aeration time in the aniline degrading-bioreactor with the analysis of metagenomic: Aniline degradation and nitrogen metabolism. Bioresour. Technol. 2022, 344, 126281. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Kulikowska, D.; Bernat, K.; Kasiński, S.; Zaborowska, M.; Kielak, T. Stabilisation of municipal solid waste after autoclaving in a passively aerated bioreactor. Waste Manag. Res. 2019, 37, 542–550. [Google Scholar] [CrossRef]
- Yuan, Q.B.; Shen, Y.; Huang, Y.M.; Hu, N. A comparative study of aeration, biostimulation and bioaugmentation in contaminated urban river purification. Environ. Technol. Innov. 2018, 11, 276–285. [Google Scholar] [CrossRef]
- Gil-Pulido, B.; Tarpey, E.; Almeida, E.L.; Finnegan, W.; Zhan, X.; Dobson, A.D.W.; O’Leary, N. Evaluation of dairy processing wastewater biotreatment in an IASBR system: Aeration rate impacts on performance and microbial ecology. Biotechnol. Rep. 2018, 19, e263. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Shen, D.; Wu, C.; Li, C.; Leng, D.; Zhao, M. Biodegradation of aniline by a novel bacterial mixed culture AC. Int. Biodeter. Biodegr. 2017, 125, 86–96. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2012. [Google Scholar]
- Zhang, S.; Li, A.; Cui, D.; Yang, J.; Ma, F. Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier. Bioresour. Technol. 2011, 102, 4360–4365. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhang, W.; Zhang, S.; Wang, H. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity. Chem. Eng. J. 2017, 326, 1223–1231. [Google Scholar] [CrossRef]
- Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.; Zhou, J.; Zhang, H. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 2015, 20, 643–651. [Google Scholar] [CrossRef]
- Devpura, N.; Jain, K.; Patel, A.; Joshi, C.G.; Madamwar, D. Metabolic potential and taxonomic assessment of bacterial community of an environment to chronic industrial discharge. Int. Biodeter. Biodegr. 2017, 123, 216–227. [Google Scholar] [CrossRef]
- Feng, L.J.; Jia, R.; Sun, J.Y.; Wang, J.; Lv, Z.H.; Mu, J.; Yang, G.F. Response of performance and bacterial community to oligotrophic stress in biofilm systems for raw water pretreatment. Biodegradation 2017, 28, 231–244. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Wang, X.; Zhang, Q.; Littleton, H. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP. J. Environ. Sci. 2017, 51, 332–341. [Google Scholar] [CrossRef]
- Yan, P.; Wang, J.; Chen, Y.; Ji, F.; Shen, Y.; Fang, F.; Lin, Y.; Guo, J.; Zhang, H.; Ouyang, W. Investigation of microbial community structure in an advanced activated sludge side-stream reactor process with alkaline treatment. Int. Biodeter. Biodegr. 2015, 104, 356–362. [Google Scholar] [CrossRef]
- Li, L.; Dong, Y.; Qian, G.; Hu, X.; Ye, L. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen. Bioresour. Technol. 2018, 258, 168–176. [Google Scholar] [CrossRef]
- Yu, N.; Guo, B.; Zhang, Y.; Zhang, L.; Zhou, Y.; Liu, Y. Different micro-aeration rates facilitate production of different end-products from source-diverted blackwater. Water Res. 2020, 177, 115783. [Google Scholar] [CrossRef] [PubMed]
- Farghaly, A.; Enitan, A.M.; Kumari, S.; Bux, F.; Tawfik, A. Polyhydroxyalkanoates production from fermented paperboard mill wastewater using acetate-enriched bacteria. Clean Technol. Environ. 2017, 19, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wei, L.; Yang, K.; Wang, H. Investigation of rapid granulation in SBRs treating aniline-rich wastewater with different aniline loading rates. Sci. Total Environ. 2019, 646, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wei, L.; Zhang, H.; Yang, K.; Wang, H. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. Bioresour. Technol. 2016, 218, 146–152. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Shang, Y.; Zhang, H.; Wei, L.; Wang, H. Response and recovery of aerobic granular sludge to pH shock for simultaneous removal of aniline and nitrogen. Chemosphere 2019, 221, 366–374. [Google Scholar] [CrossRef]
- Vijay, A.; Chhabra, M.; Vincent, T. Microbial community modulates electrochemical performance and denitrification rate in a biocathodic autotrophic and heterotrophic denitrifying microbial fuel cell. Bioresour. Technol. 2019, 272, 217–225. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Shen, X.L.; Zheng, T.C.; Abbas, G.; Fan, R.; Li, Y.M. Evaluation of Inoculum Sources for Aerobic Treatment of 2,3,4-Trifluoroaniline During Start-up and Shock. Water Air Soil Pollut. 2019, 230, 283. [Google Scholar] [CrossRef]
- Jia, L.; Jiang, B.; Huang, F.; Hu, X. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. Bioresour. Technol. 2019, 294, 122140. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Wu, Q.; Gu, Q.; Zhou, Q.; Zhang, J. Community Structure Analysis and Biodegradation Potential of Aniline-Degrading Bacteria in Biofilters. Curr. Microbiol. 2018, 75, 918–924. [Google Scholar] [CrossRef]
- Franciscon, E.; Piubeli, F.; Fantinatti-Garboggini, F.; Ragagnin De Menezes, C.; Serrano Silva, I.; Cavaco-Paulo, A.; Grossman, M.J.; Durrant, L.R. Polymerization study of the aromatic amines generated by the biodegradation of azo dyes using the laccase enzyme. Enzyme Microb. Technol. 2010, 46, 360–365. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, W.; Wang, E.; Wang, J.; Liu, Z.; Li, Y.; Wei, G. Microbial succession in response to pollutants in batch-enrichment culture. Sci. Rep. 2016, 6, 21791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Zhao, J.; Li, F.; Li, X. Performance of Denitrifying Microbial Fuel Cell with Biocathode over Nitrite. Front. Microbiol. 2016, 7, 344. [Google Scholar] [CrossRef] [PubMed]
- Gheewala, S.H.; Pole, R.K.; Annachhatre, A.P. Nitrification modelling in biofilms under inhibitory conditions. Water Res. 2004, 38, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Xu, W.; Cao, H.; Ning, P.; Zhang, Y.; Li, Y.; Sheng, Y. A novel phenol and ammonia recovery process for coal gasification wastewater altering the bacterial community and increasing pollutants removal in anaerobic/anoxic/aerobic system. Sci. Total Environ. 2019, 661, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Pishgar, R.; Dominic, J.A.; Sheng, Z.; Tay, J.H. Denitrification performance and microbial versatility in response to different selection pressures. Bioresour. Technol. 2019, 281, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Peng, Y.; Wang, S.; Wang, Z.; Jiang, H. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate. J. Hazard. Mater. 2019, 364, 163–172. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, Y.L.; Li, W.H.; Bao, L.N.; Huang, X.H.; Huang, B.; Wang, L.H. Biogas Emission from an Anaerobic Reactor. Aerosol Air Qual. Res. 2018, 18, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Yu, T.; Huangshen, L.; Han, J. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities. Bioresour. Technol. 2018, 250, 290–298. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, P.Y.; Li, H.B.; Tian, Y.; Wang, S.Y.; Song, Y.H.; Zeng, G.M.; Sun, C.; Tian, Z.Y. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community. Bioresour. Technol. 2018, 250, 110–116. [Google Scholar] [CrossRef]
- Han, X.M.; Wang, Z.W.; Ma, J.X.; Zhu, C.W.; Li, Y.X.; Wu, Z.C. Membrane bioreactors fed with different COD/N ratio wastewater: Impacts on microbial community, microbial products, and membrane fouling. Environ. Sci. Pollut. Res. 2015, 22, 11436–11445. [Google Scholar] [CrossRef]
Bioaugmentation System (R1) | Control System (R0) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aeration rate (mL air·min−1) | 300 | 400 | 500 | 600 | 700 | 800 | 300 | 400 | 500 | 600 | 700 | 800 |
DO (mg·L−1) | 0.91 | 2.21 | 3.65 | 4.22 | 5.65 | 6.78 | 0.92 | 2.14 | 3.52 | 4.62 | 5.73 | 6.81 |
pH | 7.66 | 7.72 | 7.74 | 7.78 | 7.85 | 7.92 | 7.26 | 7.67 | 7.75 | 7.81 | 7.82 | 7.91 |
Samples | Sobs | Shannon | Simpson | Ace | Chao | Coverage |
---|---|---|---|---|---|---|
C3 | 694 | 3.320 | 0.217 | 791.068 | 775.752 | 0.996 |
C4 | 604 | 4.173 | 0.040 | 705.887 | 681.410 | 0.996 |
C7 | 271 | 1.825 | 0.475 | 354.875 | 368.533 | 0.998 |
C8 | 241 | 1.244 | 0.624 | 308.927 | 306.029 | 0.998 |
S3 | 532 | 3.635 | 0.077 | 684.786 | 665.235 | 0.995 |
S4 | 729 | 4.671 | 0.028 | 818.871 | 806.159 | 0.995 |
S7 | 331 | 2.485 | 0.317 | 396.831 | 396.878 | 0.997 |
S8 | 228 | 1.720 | 0.497 | 290.520 | 293.808 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Wang, C.; Peng, H.; Zhang, Q.; Li, Y.; Wei, H.; Wang, H. Optimization of Aeration Rate—Low Cost but High Efficiency Operation of Aniline-Degrading Bioaugmentation Reactor. Water 2022, 14, 4096. https://doi.org/10.3390/w14244096
Song J, Wang C, Peng H, Zhang Q, Li Y, Wei H, Wang H. Optimization of Aeration Rate—Low Cost but High Efficiency Operation of Aniline-Degrading Bioaugmentation Reactor. Water. 2022; 14(24):4096. https://doi.org/10.3390/w14244096
Chicago/Turabian StyleSong, Jianyang, Chunyan Wang, Haojin Peng, Qian Zhang, Yao Li, Hua Wei, and Hongyu Wang. 2022. "Optimization of Aeration Rate—Low Cost but High Efficiency Operation of Aniline-Degrading Bioaugmentation Reactor" Water 14, no. 24: 4096. https://doi.org/10.3390/w14244096
APA StyleSong, J., Wang, C., Peng, H., Zhang, Q., Li, Y., Wei, H., & Wang, H. (2022). Optimization of Aeration Rate—Low Cost but High Efficiency Operation of Aniline-Degrading Bioaugmentation Reactor. Water, 14(24), 4096. https://doi.org/10.3390/w14244096