Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of m-CGPA Microspheres
2.3. Equipment
2.4. Investigation by Batch Experimental Studies
2.4.1. Screening Experiments
2.4.2. Experimental Studies
3. Results and Discussion
3.1. Characterization
3.1.1. FT-IR Analysis
3.1.2. SEM-EDS Analysis
3.1.3. XRD Analysis
3.1.4. VSM Analysis
3.1.5. Thermogravimetric Analysis
3.2. Optimization of Parameters
3.2.1. pH Point of Zero Charge (PZC) and Surface Analysis
3.2.2. Influence of Solution pH on RO 16 Dye Adsorption
3.2.3. Influence of m-CGPA Dose
3.3. Adsorption Kinetics Studies
3.4. Adsorption Isotherm Studies
3.5. Adsorption Thermodynamics
3.6. RO 16 Dye Column Adsorption Studies
3.7. Regeneration Studies of Adsorbent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Gratzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Sun, W.; Tian, R.S.; Cao, J.F.; Tian, Y.; Gurram, B.; Fan, J.L.; Peng, X.J. Smart J-Aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials 2021, 269, 120532. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, C.; Hou, B.; Wang, Y.; Hao, C.; Wu, J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 2018, 206, 587–596. [Google Scholar] [CrossRef]
- Manzoor, K.; Ahmad, M.; Ahmad, S.; Ikram, S. Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu(II) ion adsorbent. ACS Omega 2019, 4, 17425–17437. [Google Scholar] [CrossRef] [Green Version]
- Qiao, A.; Cui, M.; Huang, R.; Ding, G.; Qi, W.; He, Z.; Klemeš, J.J.; Su, R. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydr. Polym. 2021, 272, 118471. [Google Scholar] [CrossRef]
- Gulati, A.; Malik, J.; Kakkar, R. Mesoporous rGO@ZnO composite: Facile synthesis and excellent water treatment performance by pesticide adsorption and catalytic oxidative dye degradation. Chem. Eng. Res. Des. 2020, 160, 254–263. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Zhao, Z.; Zhou, J.; Chen, Z. Long term catalytic activity of pyrite in heterogeneous Fenton-like oxidation for the tertiary treatment of dyeing wastewater. J. Environ. Chem. Eng. 2021, 9, 105730. [Google Scholar] [CrossRef]
- Turcanu, A.; Bechtold, T. Cathodic decolourisation of reactive dyes in model effluents released from textile dyeing. J. Clean. Prod. 2017, 142, 1397–1405. [Google Scholar] [CrossRef]
- Tu, H.; Li, D.; Yi, Y.; Liu, R.; Wu, Y.; Dong, X.Y.; Shi, X.W.; Deng, H.B. Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos. Commun. 2019, 15, 58–63. [Google Scholar] [CrossRef]
- Amornpitoksuk, P.; Suwanboon, S.; Kaowphong, S.; Randorn, C.; Graidist, P. Photocatalytic activity of K2Ti6O13/TiO2 nanocomposite prepared using water extract of wood ash from waste for degradation of dye pollutants. J. Taiwan Inst. Chem. Eng. 2020, 117, 242–251. [Google Scholar] [CrossRef]
- Barzegar, M.H.; Sabzehmeidani, M.M.; Ghaedi, M.; Avargani, V.M.; Moradi, Z.; Roy, V.A.L.; Heidari, H. S-scheme heterojunction g-C3N4/TiO2 with enhanced photocatalytic activity for degradation of a binary mixture of cationic dyes using solar parabolic trough reactor. Chem. Eng. Res. Des. 2021, 174, 307–318. [Google Scholar] [CrossRef]
- Hachemaoui, M.; Boukoussa, B.; Ismail, I.; Mokhtar, A.; Taha, I.; Iqbal, J.; Hacini, S.; Bengueddach, A.; Hamacha, R. CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloid Surf. A 2021, 623, 126729. [Google Scholar] [CrossRef]
- He, S.J.; Sun, W.H.; Wang, J.I.; Chen, L.J.; Zhang, Y.X.; Yu, J. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation. Radiat. Phys. Chem. 2016, 124, 203–207. [Google Scholar] [CrossRef]
- Mella, B.; Puchana-Rosero, M.J.; Costa, D.E.S.; Gutterres, M. Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. J. Mol. Liq. 2017, 242, 137–145. [Google Scholar] [CrossRef]
- Cui, J.L.; Wang, X.; Yu, S.Y.; Zhong, C.S.; Wang, N.; Meng, J. Facile fabrication of chitosan-based adsorbents for effective removal of cationic and anionic dyes from aqueous solutions. Int. J. Biol. Macromol. 2020, 165, 2805–2812. [Google Scholar] [CrossRef]
- Wazir, M.B.; Daud, M.; Ali, F.; Al-Harthi, M.A. Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J. Mol. Liq. 2020, 315, 113775. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhang, B.; Wang, J.I.; Xu, J.; Manzoor, K.; Ahmad, S. New method for hydrogel synthesis from diphenylcarbazide chitosan for selective copper removal. Int. J. Biol. Macromol. 2019, 136, 189–198. [Google Scholar] [CrossRef]
- Noreen, S.; Bhatti, H.N.; Iqbal, M.; Hussain, F.; Sarim, F.M. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 2020, 147, 439–452. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Zhang, Q.; Sun, S.; Zhou, X.; Xu, Y. A novel natural lignocellulosic biosorbent of sunflower stem-pith for textile cationic dyes adsorption. J. Clean. Prod. 2022, 331, 129878. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Anbazhagan, R.; Tsai, H.; Wang, C.; Lai, J. Preparation of caffeic acid-polyethyleneimine modified sponge for emulsion separation and dye adsorption. J. Taiwan Inst. Chem. Eng. 2021, 118, 325–333. [Google Scholar] [CrossRef]
- Doondani, P.; Gomase, V.; Sarvanan, D.; Jugade, R. Chitosan coated cotton-straw-biochar as an admirable adsorbent for reactive red dye. Results Eng. 2022, 15, 100515. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Karishma, S. Review on biopolymers and composites–Evolving material as adsorbents in removal of environmental pollutants. Environ. Res. 2022, 212, 113114. [Google Scholar] [CrossRef] [PubMed]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan modifications for adsorption of pollutants—A review. J. Hazard. Mater. 2021, 408, 124889. [Google Scholar] [CrossRef]
- Khapre, M.; Pande, S.; Jugade, R. Glutaraldehyde-cross-linked chitosan–alginate composite for organic dyes removal from aqueous solutions. Int. J. Biol. Macromol. 2021, 190, 862–875. [Google Scholar] [CrossRef]
- Jeyaseelan, C.; Chaudhary, N.; Jugade, R. Sulphate-crosslinked chitosan as an adsorbent for the removal of congo red dye from aqueous solution. Air Soil Water Res. 2018, 11, 1178622118811680. [Google Scholar] [CrossRef] [Green Version]
- Korde, S.; Deshmukh, S.; Tandekar, S.; Jugade, R. Implementation of response surface methodology in physi-chemisorption of Indigo carmine dye using modified chitosan composite. Carbohydr. Polym. 2021, 2, 100081. [Google Scholar] [CrossRef]
- Vithalkar, S.; Jugade, R. Adsorptive removal of crystal violet from aqueous solution by crosslinked chitosan coated bentonite. Mater. Today Proc. 2020, 29, 1025–1032. [Google Scholar] [CrossRef]
- Khapre, M.; Jugade, R. Tetrabutylammonium Impregnated Chitosan for Adsorptive Removal of Harmful Carcinogenic Dyes from Water-Bodies. Chem. Afr. 2021, 4, 993–1005. [Google Scholar] [CrossRef]
- Park, J.S.; Park, J.W.; Ruckenstein, E. Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 2001, 42, 4271–4280. [Google Scholar] [CrossRef]
- Liang, S.; Liu, L.; Huang, Q.; Yam, K.L. Preparation of single or double-network chitosan/poly(vinyl alcohol) gel films through selectively cross-linking method. Carbohydr. Polym. 2009, 77, 718–724. [Google Scholar] [CrossRef]
- Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium based magnetic biochar. J. Hazard. Mater. 2018, 348, 10–19. [Google Scholar] [CrossRef]
- You, X.; Zhou, R.; Zhu, Y.; Bu, D.; Cheng, D. Adsorption of dyes methyl violet and malachite green from aqueous solution on multi-step modified rice husk powder in single and binary systems: Characterization, adsorption behavior and physical interpretations. J. Hazard. Mater. 2022, 430, 128445. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-Y.; Fu, Y.-Q.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G.-M. Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: Preparation, characterization, and application for adsorption of dye from aqueous solution. Bioresour. Technol. 2012, 105, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, A.; Kahu, S.; Sarvanan, D.; Jugade, R. Tin (IV) cross-linked chitosan for the removal of As (III). Carbohydr. Polym. 2017, 172, 205–212. [Google Scholar] [CrossRef]
- Thomas, J.D. Novel Associated PVA/PVP Hydrogels for Nucleus Pulposus Replacement. Master’s Thesis, Drexel University, Philadelphia, PA, USA, September 2001. [Google Scholar]
- Hassan, C.M.; Peppas, N.A. Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. Adv Polym Sci 2000, 153, 37–65. [Google Scholar]
- Cheng, M.M.; Huang, L.J.; Wang, Y.X.; Zhao, Y.C.; Tang, J.G.; Wang, Y.; Zhang, Y.; Hedayti, M.; Kipper, M.J.; Wikramasinghe, S.R. Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 2019, 54, 252–264. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared spectra of Ferrites. Phys. Rev. 1955, 99, 1727. [Google Scholar] [CrossRef]
- Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.C.N. Papandreou Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation. Curr. Nanosci. 2015, 12, 455–468. [Google Scholar] [CrossRef]
- Korde, S.; Tandekar, S.; Jugade, R. Novel mesoporous chitosan-zirconia-ferrosoferric oxide as magnetic composite for defluoridation of water. J. Environ. Chem. Eng. 2020, 8, 104360. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, S.; Li, R.; Peng, Y.; Sun, C.; Vakili, M.; Yu, G.; Deng, S. Preparation of magnetic powdered carbon/nano-Fe3O4 composite for efficient adsorption and degradation of trichloropropyl phosphate from water. J. Hazard. Mater. 2021, 416, 125765. [Google Scholar] [CrossRef]
- Saeed, T.; Naeem, A.; Mahmood, T.; Khan, A.; Ahmad, Z.; Hamayun, M. Kinetic and thermodynamic studies of polyvinyl chloride composite of manganese oxide nanosheets for the efficient removal of dye from water. Water Sci. Technol. 2021, 84, 1–14. [Google Scholar] [CrossRef]
- Saeed, T.; Naeem, A.; Din, I.U.; Farooq, M.; Khan, I.W.; Hamayun, M.; Malik, T. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. J. Hazard. Mater. 2022, 427, 127902. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Adhikari, B.; Majumder, S.B. Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind. Eng. Chem. Res. 2013, 52, 6502–6512. [Google Scholar] [CrossRef]
- Song, Y.; Wang, N.; Yang, L.Y.; Wang, Y.G.; Yu, D.; Ouyang, X. Facile fabrication of ZIF-8/calcium alginate microparticles for highly efficient adsorption of Pb(II) from aqueous solutions. Ind. Eng. Chem. Res. 2019, 58, 6394–6401. [Google Scholar] [CrossRef]
- You, X.; Wang, R.; Zhu, Y.; Sui, W.; Cheng, D. Comparison of adsorption properties of a cellulose-rich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution. Ind. Crop. Prod. 2021, 170, 113687. [Google Scholar] [CrossRef]
- Wu, Y.H.; Hu, Y.; Xie, Z.W.; Feng, S.X.; Li, B.; Mi, X.M. Characterization of biosorption process of acid orange 7 on waste brewery’s yeast. Appl. Biochem. Biotechnol. 2011, 163, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, G.; Dharmendirakumar, M.; Renganathan, S.; Sivanesan, S.; Baskar, G.; Elango, K.P. Removal of Congo Red from aqueous solutions by perlite. Clean Soil Air Water 2009, 37, 355–364. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plain surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Yildirim, A.; Acay, H.; Baran, F. Synthesis and characterisation of mushroom based nanocomposite and its efficiency on dye biosorption via antimicrobial activity. J. Environ. Anal. Chem. 2022, 28, 1068–1082. [Google Scholar] [CrossRef]
- Shah, J.A.; Ashfaq, T.; Khan, M.S.; Riaz, N.; Shah, K.H.; Arshad, M.; Shah, S.H.; Amin, B.A.; Arfan, M.; Zhang, Y.; et al. Melia azedarach Activated Carbon and its novel TiO2 Nanocomposite for Chemisorption and Photodecoloration of Reactive Orange 16: Isotherm and Kinetic Modeling. Curr. Anal. Chem. 2021, 17, 107–119. [Google Scholar] [CrossRef]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.; Asif, M.; Hameed, B. Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J. Taiwan Inst. Chem. Eng. 2017, 71, 47–54. [Google Scholar] [CrossRef]
- Malek, N.N.A.; Jawad, A.H.; Abdulhameed, A.S.; Ismail, K.; Hameed, B. New magnetic Schiff’s base-chitosan-glyoxal/fly ash/ Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int. J. Biol. Macromol. 2020, 146, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Malek, N.N.A.; Jawad, A.H.; Ismail, K.; Razuan, R.; Alothman, Z.A. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int. J. Biol. Macromol. 2021, 189, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, F.; Khanday, W.; Asif, M.; Hameed, B. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int. J. Biol. Macromol. 2016, 93, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
Adsorption Kinetics Model | Mathematical Parameters | Obtained Values |
---|---|---|
PFO kinetic model | k1 (min−1) | 0.0396 |
R2 | 0.965 | |
PSO kinetic model | k2 (g mg−1 min−1) | 0.00456 |
R2 | 0.999 | |
IPD model | ki (mg g−1 min−0.5) | 1.391 |
C | 9.546 | |
R2 | 0.834 |
Model | Derived Parameter | Mathematical Values |
---|---|---|
Langmuir | qm (mg g−1) | 196.3 |
b (L g−1) | 0.022 | |
RL | 0.376 | |
R2 | 0.964 | |
Freundlich | KF (mg1−1/n g−1 L−1) | 3.743 |
n | 2.913 | |
R2 | 0.881 |
Adsorbent | qm (mg/g) | References |
---|---|---|
Pleurotus ostreatus-based-chitosan | 64.46 | [52] |
Activated carbon-Darek sawdust | 92.84 | [53] |
Carbonized fish scales | 105.8 | [54] |
Chitosan-glyoxal/fly ash/Fe3O4 | 112.5 | [55] |
Fly ash modified magnetic chitosan-polyvinyl alcohol | 123.8 | [56] |
chitosan/sepiolite composite | 190.96 | [57] |
m-CGPA | 196.3 | Present study |
T (K) | ∆G (kJ mol−1) | ∆H (kJ mol−1) | ∆S (J mol−1 K−1) |
---|---|---|---|
303.15 | −4.6912 | −95.205 | −298.58 |
308.15 | −3.1983 | ||
313.15 | −1.7054 | ||
318.15 | −0.2125 |
Parameters | Observed Values |
---|---|
Inlet RO 16 concentration (mg L−1) Adsorbent weight (g) Flow rate (mL min−1) | 100 0.5 10 |
Breakthrough Volume (mL) | 250 |
Breakthrough Capacity (mg g−1) | 50 |
Exhaustion volume (mL) | 1050 |
Exhaustion Capacity (mg g−1) | 210 |
Degree of column utilization (%) | 23.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doondani, P.; Jugade, R.; Gomase, V.; Shekhawat, A.; Bambal, A.; Pandey, S. Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye. Water 2022, 14, 3411. https://doi.org/10.3390/w14213411
Doondani P, Jugade R, Gomase V, Shekhawat A, Bambal A, Pandey S. Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye. Water. 2022; 14(21):3411. https://doi.org/10.3390/w14213411
Chicago/Turabian StyleDoondani, Priyanka, Ravin Jugade, Vaishnavi Gomase, Anita Shekhawat, Apurva Bambal, and Sadanand Pandey. 2022. "Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye" Water 14, no. 21: 3411. https://doi.org/10.3390/w14213411
APA StyleDoondani, P., Jugade, R., Gomase, V., Shekhawat, A., Bambal, A., & Pandey, S. (2022). Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye. Water, 14(21), 3411. https://doi.org/10.3390/w14213411