Systems Thinking for Planning Sustainable Desert Agriculture Systems with Saline Groundwater Irrigation: A Review
Abstract
:1. Introduction
2. Effects of Irrigation with Saline Groundwater
2.1. Impacts of Salinity on Crop Growth
2.2. Impacts of Salinity on Soil Health
3. Soil Amendment to Increase Crop Production in Salt-Affected Soils
4. Challenges and Ways Forward
4.1. Systems Thinking to Understand Feedback Processes in Desert Agricultural Systems
- (1)
- Irrigation water sector: Egypt has an enormous reliance on the Nile River for water resources, which makes up more than 95% of total water demands in a given year [130]. The agriculture sector consumes the largest portion of the water resources (accounting for about 85% on average) [137]. An increase in Nile River diversions for agricultural irrigation of desert land will consume more river water, which leads to increased competition among the water users. This can result in more exploitation of the Nile River, with growing water conflicts among the users, which can consequently limit the water diversions and reduce the use of irrigation water from the Nile River [142,143,144]. In addressing this feedback process, the use of groundwater will reduce the Nile River diversions, improve irrigation water availability, and, in turn, mitigate the water conflicts among users [130]. However, the increased use of the saline groundwater requires more blending of fresh water from the Nile River to mitigate the negative effects of salinity (e.g., decreases in crop productivity). These results lead to a feedback process in which more water from the Nile River is diverted, which yields even greater conflict among water users. With growing water competition and conflict, the use of saline groundwater will be subject to greater restrictions, which, in turn, will bring about additional irrigation problems. Thus, a lack of consideration of these feedback processes and their interactions will lead to underestimating the requirement of total irrigation water availability—including the contribution of saline groundwater irrigation—for expanding desert agriculture.
- (2)
- Irrigation infrastructure sector: Irrigation infrastructure such as irrigation canals, groundwater pumps, and drip systems deteriorates with age and, if not replaced and upgraded, will have low irrigation efficiency. One of the goals for irrigation infrastructure management would be to improve irrigation efficiency by maximizing the consumptive portion of supplied water for agricultural productivity [145]. The deterioration of irrigation infrastructure can produce low irrigation efficiency, leading to low water availability due to increases in pumping costs and water losses. Meanwhile, regular maintenance activities such as the replacement of pumps and irrigation drip lines or canal lining can be implemented to achieve the management goals, which reduces the deviation of the irrigation efficiency from a set threshold [145]. However, the proper maintenance activities incur high but required financial costs, which will cause pressure in terms of the funding needed for their implementation. A limited or insufficient financial allocation to cover these costs can constrain maintenance activities and, in turn, result in rapidly deteriorating infrastructure. Thus, there is a need for cost-effective management options with sufficient affordability to plan desert agricultural systems that depend on groundwater use.
- (3)
- Soil sector: The use of saline groundwater for irrigation increases the soil salinity, which lowers a soil’s hydraulic conductivity and reduces crop yields [146]. Thus, desert agricultural systems require the use of innovative options including the use of soil amendments (e.g., biochar) or blending of freshwater with saline groundwater to mitigate the adverse effects of high salinity on crop yields [146,147,148,149]. In this context, irrigation with saline groundwater increases the soil salinity, which leads to an increase in the diversion of freshwater supplies from the Nile River to leach out the accumulated salt from the soil and root zone [79,150]. This increase in the demand on diversions from the Nile River will increase local water conflicts, which will limit the opportunities to blend the Nile River with saline groundwater, and, in turn, amelioration of the soil conditions [151]. Furthermore, an increase in the use of soil amendments (e.g., biochar), which can reduce the amount of freshwater supplies and salinity stress on plants, can have adverse effects on public and environmental health, e.g., biochar can contain emerging pollutants such as carcinogenic polyaromatic hydrocarbons (PAHs) [152]. The presence of emerging contaminants can limit the use of soil amendments due to existing public health and environmental regulations [129]. Thus, improving soil conditions through the mitigation of salinity effects requires a comprehensive understanding of the interactive feedback processes related to water resources availability, public safety, and environmental protection.
- (4)
- Crop productivity sector: Egypt faces food security challenges to keep pace with its rapid population growth, which experts estimate will require a 70% increase in agricultural crop production by 2050 [130]. However, the agricultural production from reclaimed desert lands, which accounts for about 25% of the total fertile agricultural area, only contributes to 7% of total agricultural production in Egypt [130]. The limited availability of irrigation water or increased soil salinity can reduce crop yields, which leads to decreased agricultural production and farming income. The reduced farming income can increase the movement of populations away from the farming areas, which reduces the level of available farm labor [137]. Insufficient availability of labor can limit farming activities and further reduce crop yields and farm income [137,153]. Furthermore, the growing use of the Nile River for crop irrigation and the enhanced application of soil amendments (e.g., biochar and fertilizers) to increase crop productivity will increase the financial investment in irrigation infrastructure and soil management programs. These required investments will result in increasing agricultural costs, which, in turn, will reduce net farming income. In addition, the application of fertilizers and pesticides to improve crop yields can deteriorate soil quality in the long term and increase groundwater contamination [154,155]. Chemical contamination of groundwater may result in negative impacts on human health and the environment (e.g., Nile River water quality and ecosystem, greenhouse gas emissions) [156,157,158,159,160]. From a holistic feedback perspective, the legal regulations or policies aimed at protecting human health and the environment will limit the soil amendment activities, which, in turn, will limit the improvement of agricultural crop yields [161,162].
4.2. Need to Address Dynamics in Drivers
4.3. The Need for a System Dynamics Approach in Decision-Making
4.4. Sustainable Desert Agricultural Systems with Saline Groundwater Irrigation
4.4.1. Diversification and Decentralization in Irrigation Systems
4.4.2. Urban Water Demand Management
4.4.3. Sufficient Energy Availability
4.4.4. Smart Irrigation System
4.4.5. Active Participation of Stakeholders
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosegrant, M.W. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, J.; Waite, R.; Searchinger, T.; Hanson, C. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts. 2018. Available online: https://www.wri.org/insights/how-sustainably-feed-10-billion-people-2050-21-charts (accessed on 9 July 2022).
- Döös, B.R. Population Growth and Loss of Arable Land. Glob. Environ. Change 2002, 12, 303–311. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cai, X. Global Water Demand and Supply Projections: Part 2. Results and Prospects to 2025. Water Int. 2002, 27, 170–182. [Google Scholar] [CrossRef]
- Rock, M.T. Freshwater Use, Freshwater Scarcity, and Socioeconomic Development. J. Environ. Dev. 1998, 7, 278–301. [Google Scholar] [CrossRef]
- Gleick, P.H.; Palaniappan, M. Peak Water Limits to Freshwater Withdrawal and Use. Proc. Natl. Acad. Sci. USA 2010, 107, 11155–11162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. Global Food Demand Scenarios for the 21st Century. PLoS ONE 2015, 10, e0139201. [Google Scholar] [CrossRef] [PubMed]
- Abaza, H. Mainstreaming the Nexus Approach in Water, Food and Energy Policies in the MENA Region. Quad. Mediterrània 2017, 25, 75–82. Available online: https://www.iemed.org/publication/mainstreaming-the-nexus-approach-in-water-food-and-energy-policies-in-the-mena-region/ (accessed on 24 June 2022).
- Ashley, J.M. Chapter Three—Causes of Food Insecurity. In Food Security in the Developing World; Ashley, J.M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 39–55. ISBN 978-0-12-801594-0. [Google Scholar]
- Ashley, J.M. Chapter Six—Cross-Cutting Issues. In Food Security in the Developing World; Ashley, J.M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 141–191. ISBN 978-0-12-801594-0. [Google Scholar]
- Moghazy, N.H.; Kaluarachchi, J.J. Sustainable Agriculture Development in the Western Desert of Egypt: A Case Study on Crop Production, Profit, and Uncertainty in the Siwa Region. Sustainability 2020, 12, 6568. [Google Scholar] [CrossRef]
- Roberts, P. Watering a Dry Land: Wyoming and Federal Irrigation. WyoHistory.Org. Available online: https://www.wyohistory.org/encyclopedia/watering-dry-land-wyoming-and-federal-irrigation (accessed on 24 June 2022).
- Kassim, Y.; Mahmoud, M.; Kurdi, S.; Breisinger, C. An Agricultural Policy Review of Egypt: First Steps towards a New Strategy. International Food Policy Research Institute, Middle East and North Africa Regional Program Working Paper 11. Available online: https://www.ifpri.org/publication/agricultural-policy-review-egypt-first-steps-towards-new-strategy (accessed on 26 June 2022).
- Barnes, J. Pumping Possibility: Agricultural Expansion through Desert Reclamation in Egypt. Soc. Stud. Sci. 2012, 42, 517–538. [Google Scholar] [CrossRef]
- Mikhail, A. Water on Sand: Environmental Histories of the Middle East and North Africa; Oxford University Press: New York, NY, USA, 2013; ISBN 978-0-19-976866-0. [Google Scholar]
- Population Growth in Egypt. WorldData.info. Available online: https://www.worlddata.info/africa/egypt/populationgrowth.php (accessed on 26 June 2022).
- Egypt’s Population to Rise to 190 Million by 2050 If Current Growth Continues: Planning Official. egypttoday. Available online: https://www.egypttoday.com/Article/1/106627/Egypt’s-population-to-rise-to-190-million-by-2050-if (accessed on 26 June 2022).
- Shalaby, A.; Tateishi, R. Remote Sensing and GIS for Mapping and Monitoring Land Cover and Land-Use Changes in the Northwestern Coastal Zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Ahmed, O.; Sallam, W. Studying the Volatility Effect of Agricultural Exports on Agriculture Share of GDP: The Case of Egypt. Afr. J. Agric. Res. 2018, 13, 345–352. [Google Scholar] [CrossRef]
- Dessalegn, B. Developing a Guideline to Enhance NARS’ R4D Impact and Strengthen the Institutional Linkages between NARS Actors in Egypt. 2022. Available online: https://hdl.handle.net/20.500.11766/67450 (accessed on 15 June 2022).
- Ahmed, O.; Sallam, W. Assessing the Potential of Improving Livelihoods and Creating Sustainable Socio-Economic Circumstances for Rural Communities in Upper Egypt. Sustainability 2020, 12, 6307. [Google Scholar] [CrossRef]
- Maqbool, M.A.; Kerry, B. Plant Nematode Problems and Their Control in the Near East Region. Proceedings. FAO Plant Prod. Prot. Paper (FAO) 1997, 144. Available online: https://www.fao.org/3/V9978E/V9978E00.htm (accessed on 16 October 2022).
- Darwish, K.; Safaa, M.; Momou, A.; Saleh, S.A. Egypt: Land Degradation Issues with Special Reference to the Impact of Climate Change. In Combating Desertification in Asia, Africa and the Middle East: Proven practices; Heshmati, G.A., Squires, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 113–136. ISBN 978-94-007-6652-5. [Google Scholar]
- Pemunta, N.V.; Ngo, N.V.; Fani Djomo, C.R.; Mutola, S.; Seember, J.A.; Mbong, G.A.; Forkim, E.A. The Grand Ethiopian Renaissance Dam, Egyptian National Security, and Human and Food Security in the Nile River Basin. Cogent Soc. Sci. 2021, 7, 1875598. [Google Scholar] [CrossRef]
- Mohamed, N.N. Use of Groundwater in Nile Alluvial Soils and Their Fringes. In Groundwater in the Nile Delta; Negm, A.M., Ed.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 107–140. ISBN 978-3-319-94283-4. [Google Scholar]
- El Massah, S.; Omran, G. Would Climate Change Affect the Imports of Cereals? The Case of Egypt. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin, Heidelberg, 2015; pp. 657–683. ISBN 978-3-642-38670-1. [Google Scholar]
- Ouda, S.A.H.; Zohry, A.E.-H. Crops Intensification to Reduce Wheat Gap in Egypt. In Future of Food Gaps in Egypt: Obstacles and Opportunities; Ouda, S.A.H., Zohry, A.E.-H., Alkitkat, H., Morsy, M., Sayad, T., Kamel, A., Eds.; SpringerBriefs in Agriculture; Springer International Publishing: Cham, Switzerland, 2017; pp. 37–56. ISBN 978-3-319-46942-3. [Google Scholar]
- Wheat. OEC. Available online: https://oec.world/en/profile/hs/wheat (accessed on 26 June 2022).
- Mohamed, E.S.; Morgun, E.G.; Goma Bothina, S.M. Assessment of Soil Salinity in the Eastern Nile Delta (Egypt) Using Geoinformation Techniques. Mosc. Univ. Soil Sci. Bull. 2011, 66, 11–14. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Eichler-Löbermann, B.; Schnug, E. Response of Crops to Salinity under Egyptian Conditions: A Review. Landbauforsch. Völkenrode FAL Agric. Res. 2007, 57, 119–125. [Google Scholar]
- Kotb, T.H.S.; Watanabe, T.; Ogino, Y.; Tanji, K.K. Soil Salinization in the Nile Delta and Related Policy Issues in Egypt. Agric. Water Manag. 2000, 43, 239–261. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Ghanayem, H.M.; Zeleňáková, M.; Mésároš, P.; Saleh, O.K. Numerical Investigation for Riverbank Filtration Sustainability Considering Climatic Changes in Arid and Semi-Arid Regions; Case Study of RBF Site at Embaba, Nile Delta, Egypt. Sustainability 2021, 13, 1897. [Google Scholar] [CrossRef]
- Nikiel, C.A.; Eltahir, E.A.B. Past and Future Trends of Egypt’s Water Consumption and Its Sources. Nat. Commun. 2021, 12, 4508. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M. Water Use and Stress. Our World Data 2017. Available online: https://ourworldindata.org/water-use-stress (accessed on 7 July 2022).
- Madramootoo, C.A. Sustainable Groundwater Use in Agriculture. Irrig. Drain. 2012, 61, 26–33. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Kamel, A.H. Groundwater in Egypt Issue: Resources, Location, Amount, Contamination, Protection, Renewal, Future Overview. Egypt. J. Chem. 2016, 59, 321–362. [Google Scholar] [CrossRef] [Green Version]
- El Tahlawi, M.R.; Farrag, A.A.; Ahmed, S.S. Groundwater of Egypt: “An Environmental Overview”. Environ. Geol. 2008, 55, 639–652. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D.; Seybold, H.; Fan, Y.; Kirchner, J.W. Groundwater Level Observations in 250,000 Coastal US Wells Reveal Scope of Potential Seawater Intrusion. Nat. Commun. 2020, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Salinity, Growth and Phytohormones. In Salinity: Environment-Plants-Molecules; Läuchli, A., Lüttge, U., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 271–290. ISBN 978-0-306-48155-0. [Google Scholar]
- Mudgal, V.; Madaan, N.; Mudgal, A. Biochemical Mechanisms of Salt Tolerance in Plants: A Review. Int. J. Bot. 2010, 6, 136–143. [Google Scholar] [CrossRef] [Green Version]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Hazman, M.; Brown, K.M. Progressive Drought Alters Architectural and Anatomical Traits of Rice Roots. Rice 2018, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- To, H.T.M.; Nguyen, H.T.; Dang, N.T.M.; Nguyen, N.H.; Bui, T.X.; Lavarenne, J.; Phung, N.T.P.; Gantet, P.; Lebrun, M.; Bellafiore, S.; et al. Unraveling the Genetic Elements Involved in Shoot and Root Growth Regulation by Jasmonate in Rice Using a Genome-Wide Association Study. Rice 2019, 12, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, A.; Cal, A.J.; Batoto, T.C.; Torres, R.O.; Serraj, R. Root Attributes Affecting Water Uptake of Rice (Oryza sativa) under Drought. J. Exp. Bot. 2012, 63, 4751–4763. [Google Scholar] [CrossRef] [Green Version]
- Kadam, N.N.; Tamilselvan, A.; Lawas, L.M.F.; Quinones, C.; Bahuguna, R.N.; Thomson, M.J.; Dingkuhn, M.; Muthurajan, R.; Struik, P.C.; Yin, X.; et al. Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit. Plant Physiol. 2017, 174, 2302–2315. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.P.; Chimungu, J.G.; Brown, K.M. Root Anatomical Phenes Associated with Water Acquisition from Drying Soil: Targets for Crop Improvement. J. Exp. Bot. 2014, 65, 6155–6166. [Google Scholar] [CrossRef] [Green Version]
- Bañón, S.; Miralles, J.; Ochoa, J.; Sánchez-Blanco, M.J. The Effect of Salinity and High Boron on Growth, Photosynthetic Activity and Mineral Contents of Two Ornamental Shrubs. Hortic. Sci. 2012, 39, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blanco, M.J.; Álvarez, S.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Root System Response to Drought and Salinity: Root Distribution and Water Transport. In Root Engineering: Basic and Applied Concepts; Morte, A., Varma, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 325–352. ISBN 978-3-642-54276-3. [Google Scholar]
- Läuchli, A.; Grattan, S.R. Plant Growth And Development Under Salinity Stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32. ISBN 978-1-4020-5578-2. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccoli, R.D.; Blanco, N.E.; Medina, M.; Carrillo, N. Stress Response of Transgenic Tobacco Plants Expressing a Cyanobacterial Ferredoxin in Chloroplasts. Plant Mol. Biol. 2011, 76, 535–544. [Google Scholar] [CrossRef]
- Cramer, G.R.; Epstein, E.; Lauchli, A. Kinetics of Root Elongation of Maize in Response to Short-Term Exposure to NaCl and Elevated Calcium Concentration1. J. Exp. Bot. 1988, 39, 1513–1522. [Google Scholar] [CrossRef]
- Hazman, M.; Hause, B.; Eiche, E.; Riemann, M.; Nick, P. Different Forms of Osmotic Stress Evoke Qualitatively Different Responses in Rice. J. Plant Physiol. 2016, 202, 45–56. [Google Scholar] [CrossRef]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J. Theo.M.; Testerink, C. Roots Withstanding Their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar] [CrossRef] [Green Version]
- Galvan-Ampudia, C.S.; Julkowska, M.M.; Darwish, E.; Gandullo, J.; Korver, R.A.; Brunoud, G.; Haring, M.A.; Munnik, T.; Vernoux, T.; Testerink, C. Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Curr. Biol. 2013, 23, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Jiang, H.; Xu, Y.; Li, H.; Wu, X.; Xie, Q.; Li, C. The CCCH-Type Zinc Finger Proteins AtSZF1 and AtSZF2 Regulate Salt Stress Responses in Arabidopsis. Plant Cell Physiol. 2007, 48, 1148–1158. [Google Scholar] [CrossRef] [Green Version]
- Julkowska, M.M.; Hoefsloot, H.C.J.; Mol, S.; Feron, R.; de Boer, G.-J.; Haring, M.A.; Testerink, C. Capturing Arabidopsis Root Architecture Dynamics with Root-Fit Reveals Diversity in Responses to Salinity. Plant Physiol. 2014, 166, 1387–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, P.; Ranathunge, K.; Nayak, S.; Schreiber, L.; Mathew, M.K. Root Apoplastic Barriers Block Na+ Transport to Shoots in Rice (Oryza sativa L.). J. Exp. Bot. 2011, 62, 4215–4228. [Google Scholar] [CrossRef] [PubMed]
- Wiesman, Z. Chapter 3—Key Characteristics of the Desert Environment. In Desert Olive Oil Cultivation; Wiesman, Z., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 31–53. ISBN 978-0-12-374257-5. [Google Scholar]
- Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R. Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 377–412. ISBN 978-3-319-23576-9. [Google Scholar]
- Cui, G.; Lu, Y.; Zheng, C.; Liu, Z.; Sai, J. Relationship between Soil Salinization and Groundwater Hydration in Yaoba Oasis, Northwest China. Water 2019, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Soil Salinization as a Global Major Challenge | ITPS Soil Letter #3. Global Soil Partnership, Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1412475/ (accessed on 24 June 2022).
- Zhang, W.; Wang, C.; Xue, R.; Wang, L. Effects of Salinity on the Soil Microbial Community and Soil Fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.-J. Salinity and Crop Yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- McFarland, M.J. Biosolids Engineering; McGraw-Hill Education: New York, NY, USA, 2001; ISBN 978-0-07-047178-8. [Google Scholar]
- Tang, S.; She, D.; Wang, H. Effect of Salinity on Soil Structure and Soil Hydraulic Characteristics. Can. J. Soil Sci. 2021, 101, 62–73. [Google Scholar] [CrossRef]
- Mustafa, G.; Akhtar, M.S.; Abdullah, R. Global Concern for Salinity on Various Agro-Ecosystems. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1; Akhtar, M.S., Ed.; Springer: Singapore, 2019; pp. 1–19. ISBN 9789811388019. [Google Scholar]
- Welle, P.D.; Mauter, M.S. High-Resolution Model for Estimating the Economic and Policy Implications of Agricultural Soil Salinization in California. Environ. Res. Lett. 2017, 12, 094010. [Google Scholar] [CrossRef]
- Martinez-Beltran, J. Overview of Salinity Problems in the World and FAO Strategies to Address the Problem. In Proceedings of the International Salinity Forum: Managing Saline Soils and Water: Science, Technology and Social Issues, Riverside, CA, USA, 25–27 April 2005. [Google Scholar]
- Groundwater Decline and Depletion. U.S. Geological Survey. Available online: https://www.usgs.gov/special-topics/water-science-school/science/groundwater-decline-and-depletion (accessed on 24 June 2022).
- Stenhouse, J.; Kijne, J.W. Prospects for Productive Use of Saline Water in West Asia and North Africa; Research Report 11 of the Comprehensive Assessment of Water Management in Agriculture; International Water Management Institute: Colombo, Sri Lanka, 2006; ISBN 978-92-9090-6308. [Google Scholar]
- Sharaky, A.M.; El Abd, E.S.A.; Shanab, E.F. Groundwater Assessment for Agricultural Irrigation in Toshka Area, Western Desert, Egypt. In Conventional Water Resources and Agriculture in Egypt; Negm, A.M., Ed.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 347–387. ISBN 978-3-319-95065-5. [Google Scholar]
- El-Sayed, L. Determining an Optimum Cropping Pattern for Egypt. Ph.D. Thesis, The American University in Cairo, New Cairo, Egypt, 2012. [Google Scholar]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of Organic Amendment as a Strategy for Saline Soil Remediation: Influence on the Physical, Chemical and Biological Properties of Soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Kamara, A.Y.; Ewansiha, S.U.; Ajeigbe, H.A.; Omoigui, L.O. Response of Old and New Cowpea Varieties to Insecticide Spray Regimes in the Sudan Savanna of Nigeria. Arch. Phytopathol. Plant Prot. 2013, 46, 52–63. [Google Scholar] [CrossRef]
- Leaching Requirement—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/leaching-requirement (accessed on 3 August 2022).
- Choukr-Allah, R.; Rao, N.K.; Hirich, A.; Shahid, M.; Alshankiti, A.; Toderich, K.; Gill, S.; Butt, K.U.R. Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions. Front. Plant Sci. 2016, 7, 346. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil Salinity under Climate Change: Challenges for Sustainable Agriculture and Food Security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Yao, S.-H.; Han, X.-Z.; Zhang, B.; Banwart, S.A. Chapter Six—Soil Mineralogy Changes with Different Agricultural Practices during 8-Year Soil Development from the Parent Material of a Mollisol. Adv. Agron. 2017, 142, 143–179. [Google Scholar] [CrossRef]
- Shaaban, M.; Abid, M.; Abou-Shanab, R.A.I. Amelioration of Salt Affected Soils in Rice Paddy System by Application of Organic and Inorganic Amendments. Plant Soil Environ. 2013, 59, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Bayoumy, M.A.; Khalifa, T.H.H.; Aboelsoud, H.M. Impact of Some Organic and Inorganic Amendments on Some Soil Properties and Wheat Production under Saline-Sodic Soil. J. Soil Sci. Agric. Eng. 2019, 10, 307–313. [Google Scholar] [CrossRef]
- Allen, H.L.; Brown, S.L.; Chaney, R.L.; Daniels, W.L.; Henry, C.L.; Neuman, D.R.; Rubin, E.; Ryan, J.; Toffey, W. The Use of Soil Amendments for Remediation, Revitalization, and Reuse; EPA 542-R-07-013; US Environmental Protection Agency: Washington, DC, USA, 2007. Available online: https://www.epa.gov/biosolids/use-soil-amendments-remediation-revitalization-and-reuse (accessed on 3 August 2022).
- Graber, E.R.; Fine, P.; Levy, G.J. Soil Stabilization in Semiarid and Arid Land Agriculture. J. Mater. Civ. Eng. 2006, 18, 190–205. [Google Scholar] [CrossRef]
- Yoo, M.S.; James, B.R. Zinc Extractability as a Function of PH in Organic Waste-Amended Soils. Soil Sci. 2002, 167, 246–259. [Google Scholar] [CrossRef]
- Barakat, A.O.; Khairy, M.A.; Mahmoud, M.R. Organochlorine Pesticides and Polychlorinated Biphenyls in Sewage Sludge from Egypt. J. Environ. Sci. Health Part A 2017, 52, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A.; Joss, A.; Siegrist, H. Scrutinizing Pharmaceuticals and Personal Care Products in Wastewater Treatment. Environ. Sci. Technol. 2004, 38, 392A–399A. [Google Scholar] [CrossRef] [Green Version]
- Roig, N.; Sierra, J.; Nadal, M.; Martí, E.; Navalón-Madrigal, P.; Schuhmacher, M.; Domingo, J.L. Relationship between Pollutant Content and Ecotoxicity of Sewage Sludges from Spanish Wastewater Treatment Plants. Sci. Total Environ. 2012, 425, 99–109. [Google Scholar] [CrossRef]
- Gómez-Canela, C.; Barth, J.A.C.; Lacorte, S. Occurrence and Fate of Perfluorinated Compounds in Sewage Sludge from Spain and Germany. Environ. Sci. Pollut. Res. 2012, 19, 4109–4119. [Google Scholar] [CrossRef]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of Microplastic Accumulation in Agricultural Soils from Sewage Sludge Disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Iranpour, R.; Taylor, D.; Cox, H.H.J. Biosolids Regulations in the United States and European Union. In Proceedings of the WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, Baltimore, MD, USA, 19–22 February 2003; pp. 1433–1452. [Google Scholar]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land Application of Biosolids in the USA: A Review. Appl. Environ. Soil. Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef] [Green Version]
- Saifullah; Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar Application for the Remediation of Salt-Affected Soils: Challenges and Opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing Hazard Impacts of Soil Salinity and Water Stress on Wheat Plants by Soil Application of Vermicompost and Biochar. Physiol. Plant. 2021, 172, 587–602. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.M.; Ramadan, M.E.E.; Masoud, N.G. A Step Forward Towards Food Safety from Parasite Infective Agents. In Food Security and Safety: African Perspectives; Babalola, O.O., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 807–832. ISBN 978-3-030-50672-8. [Google Scholar]
- Tenenbaum, D.J. Biochar: Carbon Mitigation from the Ground Up. Environ. Health Perspect. 2009, 117, A70–A73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, D.A. The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, While Improving Soil and Water Quality. Agron. J. 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Lal, R. Soils and Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Lal, R. Sequestering Carbon in Soils of Agro-Ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of Biochar and Hydrochar Addition on Water Retention and Water Repellency of Sandy Soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Backer, R.G.M.; Schwinghamer, T.D.; Whalen, J.K.; Seguin, P.; Smith, D.L. Crop Yield and SOC Responses to Biochar Application Were Dependent on Soil Texture and Crop Type in Southern Quebec, Canada. J. Plant Nutr. Soil Sci. 2016, 179, 399–408. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage. Pedosphere 2017, 27, 236–247. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of Biochars Produced from Different Feedstocks on Soil Properties and Sunflower Growth. J. Plant Nutr. Soil Sci. 2014, 177, 16–25. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the Impact of Biochar Additions on Soil Hydraulic Properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of Change in Biochar Properties Derived from Different Feedstock and Pyrolysis Temperature for Environmental and Agricultural Application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Baiamonte, G.; Minacapilli, M.; Crescimanno, G. Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil. Sustainability 2020, 12, 7678. [Google Scholar] [CrossRef]
- Youssef, M.E.-S.; Al-Easily, I.a.S.; Nawar, D.A.S. Impact of Biochar Addition on Productivity and Tubers Quality of Some Potato Cultivars Under Sandy Soil Conditions. Egypt. J. Hortic. 2017, 44, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Hagab, R.H.; Eissa, D.; Abou-Shady, A.; Abdelmottaleb, O. Effect of Biochar Addition on Soil Properties and Carrot Productivity Grown in Polluted Soils. Egypt. J. Desert Res. 2016, 66, 327–350. [Google Scholar] [CrossRef]
- Ramadan, A.; Essay, E.; Saleh, M. Sustainable Management of Deficit Irrigation in Sandy Soils by Producing Biochar and Adding It as a Soil Amendment. Middle East J. Agric. Res. 2018, 6, 1359–1375. [Google Scholar]
- Ali, M.M.E. Effect of Plant Residues Derived Biochar on Fertility of a New Reclaimed Sandy Soil and Growth of Wheat (Triticum aestivum L.). Egypt. J. Soil Sci. 2018, 58, 93–103. [Google Scholar] [CrossRef]
- Mohamed, W.S.; Hammam, A.A. Poultry Manure-Derived Biochar As A Soil Amendment and Fertilizer for Sandy Soils under Arid Conditions. Egypt. J. Soil Sci. 2019, 59, 1–14. [Google Scholar] [CrossRef]
- Ibrahim, M.; Mahmoud, E.; Gad, L.; Khader, A. Effects of Biochar and Phosphorus Fertilizer Rates on Soil Physical Properties and Wheat Yield on Clay Textured Soil in Middle Nile Delta of Egypt. Commun. Soil Sci. Plant Anal. 2019, 50, 2756–2766. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Tan, Q.; Sun, X.; Wei, W.; Hu, C. Biochar Is Superior to Lime in Improving Acidic Soil Properties and Fruit Quality of Satsuma Mandarin. Sci. Total Environ. 2020, 714, 136722. [Google Scholar] [CrossRef]
- Drake, J.A.; Cavagnaro, T.R.; Cunningham, S.C.; Jackson, W.R.; Patti, A.F. Does Biochar Improve Establishment of Tree Seedlings in Saline Sodic Soils? Land Degrad. Dev. 2016, 27, 52–59. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Al-wabel, M.I.; Ok, Y.S.; Al-harbi, A.; Wahb-allah, M.; El-naggar, A.H.; Ahmad, M.; Al-faraj, A.; Al-omran, A. Conocarpus Biochar Induces Changes in Soil Nutrient Availability and Tomato Growth Under Saline Irrigation. Pedosphere 2016, 26, 27–38. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Gamareldawla, A.H.D.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S. Benefits of Soil Biochar Amendments to Tomato Growth under Saline Water Irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zhang, Z.; Zhu, C.; Zhai, Y.; Lu, P. Effect of Biochar on Sweet Corn and Soil Salinity under Conjunctive Irrigation with Brackish Water in Coastal Saline Soil. Sci. Hortic. 2019, 250, 405–413. [Google Scholar] [CrossRef]
- El-sayed, M.E.A.; Hazman, M.; Abd El-Rady, A.G.; Almas, L.; McFarland, M.; Shams El Din, A.; Burian, S. Biochar Reduces the Adverse Effect of Saline Water on Soil Properties and Wheat Production Profitability. Agriculture 2021, 11, 1112. [Google Scholar] [CrossRef]
- Hazman, M.Y.; El-Sayed, M.E.A.; Kabil, F.F.; Helmy, N.A.; Almas, L.; McFarland, M.; Shams El Din, A.; Burian, S. Effect of Biochar Application to Fertile Soil on Tomato Crop Production under Saline Irrigation Regime. Agronomy 2022, 12, 1596. [Google Scholar] [CrossRef]
- Liang, J.-F.; Li, Q.-W.; Gao, J.-Q.; Feng, J.-G.; Zhang, X.-Y.; Hao, Y.-J.; Yu, F.-H. Biochar-Compost Addition Benefits Phragmites Australis Growth and Soil Property in Coastal Wetlands. Sci. Total Environ. 2021, 769, 145166. [Google Scholar] [CrossRef] [PubMed]
- Marks, E.A.N.; Mattana, S.; Alcañiz, J.M.; Domene, X. Biochars Provoke Diverse Soil Mesofauna Reproductive Responses in Laboratory Bioassays. Eur. J. Soil Biol. 2014, 60, 104–111. [Google Scholar] [CrossRef]
- Omar Al-Sayed Radwan, A.; Ashour Ahmed Abu Al-Ela, I.; Abdullah Aliwa, I. The Smart Cites Structure and Sustainable Development in Western Desert of Egypt. Int. J. Archit. Eng. Urban Res. 2021, 4, 1–17. [Google Scholar] [CrossRef]
- Zidan, M.S.; Dawoud, M.A. Agriculture Use of Marginal Water in Egypt: Opportunities and Challenges. Dev. Soil Salin. Assess. Reclam. 2013, 661–679. [Google Scholar]
- Shalaby, M.Y.; Al-Zahrani, K.H.; Baig, M.B.; Straquadine, G.S.; Aldosari, F. Threats and Challenges to Sustainable Agriculture and Rural Development in Egypt: Implications for Agricultural Extension. J. Anim. Plant Sci. 2011, 21, 581–588. [Google Scholar]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef] [Green Version]
- van Wijk, M.T.; Merbold, L.; Hammond, J.; Butterbach-Bahl, K. Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Front. Sustain. Food Syst. 2020, 4, 558483. [Google Scholar] [CrossRef]
- Owsianiak, M.; Lindhjem, H.; Cornelissen, G.; Hale, S.E.; Sørmo, E.; Sparrevik, M. Environmental and Economic Impacts of Biochar Production and Agricultural Use in Six Developing and Middle-Income Countries. Sci. Total Environ. 2021, 755, 142455. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; El-Marsafawy, S.M.; Lewis, L.N. Sustainable Agriculture and Climate Changes in Egypt. Sustain. Agric. Rev. 2013, 41–95. [Google Scholar]
- Shin, S.; Aziz, D.; Jabeen, U.; Bano, R.; Burian, S.J. A Trade-off Balance among Urban Water Infrastructure Improvements and Financial Management to Achieve Water Sustainability. Urban Water J. 2022, 19, 195–207. [Google Scholar] [CrossRef]
- Shivrath, Y.; Patel, B.; Thirumalasetty, S.; Narsaiah, E.L. Design & Integration of Wind-Solar Hybrid Energy System for Drip Irrigation Pumping Application. Int. J. Mod. Eng. Res. IJMER 2012, 2, 2947–2950. [Google Scholar]
- Watson, A. “The Single Most Important Factor”: Fossil Fuel Energy, Groundwater, and Irrigation on the High Plains, 1955–1985. Agric. Hist. 2020, 94, 629–663. [Google Scholar] [CrossRef]
- Saysel, A.K.; Barlas, Y.; Yenigün, O. Environmental Sustainability in an Agricultural Development Project: A System Dynamics Approach. J. Environ. Manag. 2002, 64, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G.; Thapa, G.B. Sustainability of Ecological and Conventional Agricultural Systems in Bangladesh: An Assessment Based on Environmental, Economic and Social Perspectives. Agric. Syst. 2004, 79, 327–351. [Google Scholar] [CrossRef]
- Ramli, N.N.; Shamsudin, M.N.; Mohamed, Z.; Radam, A. The Impact of Fertilizer Subsidy on Malaysia Paddy/Rice Industry Using a System Dynamics Approach. Int. J. Soc. Sci. Humanity 2012, 2, 213. [Google Scholar]
- Kotir, J.H.; Smith, C.; Brown, G.; Marshall, N.; Johnstone, R. A System Dynamics Simulation Model for Sustainable Water Resources Management and Agricultural Development in the Volta River Basin, Ghana. Sci. Total Environ. 2016, 573, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Bjornlund, V.; Bjornlund, H. Understanding Agricultural Water Management in a Historical Context Using a Socioeconomic and Biophysical Framework. Agric. Water Manag. 2019, 213, 454–467. [Google Scholar] [CrossRef]
- Turner, B.L.; Kodali, S. Soil System Dynamics for Learning about Complex, Feedback-Driven Agricultural Resource Problems: Model Development, Evaluation, and Sensitivity Analysis of Biophysical Feedbacks. Ecol. Model. 2020, 428, 109050. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. A Review of the Interactions between Biodiversity, Agriculture, Climate Change, and International Trade: Research and Policy Priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
- Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; MacGraw Hill: New York, NY, USA, 2000; ISBN 978-0-07-231135-8. [Google Scholar]
- Pluchinotta, I.; Pagano, A.; Giordano, R.; Tsoukiàs, A. A System Dynamics Model for Supporting Decision-Makers in Irrigation Water Management. J. Environ. Manag. 2018, 223, 815–824. [Google Scholar] [CrossRef]
- Giordano, R.; Brugnach, M.; Pluchinotta, I. Ambiguity in Problem Framing as a Barrier to Collective Actions: Some Hints from Groundwater Protection Policy in the Apulia Region. Group Decis. Negot. 2017, 26, 911–932. [Google Scholar] [CrossRef]
- Hassenforder, E.; Brugnach, M.; Cullen, B.; Ferrand, N.; Barreteau, O.; Daniell, K.A.; Pittock, J. Managing Frame Diversity in Environmental Participatory Processes–Example from the Fogera Woreda in Ethiopia. J. Environ. Manag. 2016, 177, 288–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Langarudi, S.P.; Fernald, A.G. System Dynamics Modeling for Evaluating Regional Hydrologic and Economic Effects of Irrigation Efficiency Policy. Hydrology 2021, 8, 61. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Anawar, H.M. Application of Biochars for Soil Constraints: Challenges and Solutions. Pedosphere. 2015, 25, 631–638. [Google Scholar] [CrossRef]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar Mitigates Negative Effects of Salt Additions on Two Herbaceous Plant Species. J. Environ. Manag. 2013, 129, 62–68. [Google Scholar] [CrossRef]
- Lashari, M.S.; Ye, Y.; Ji, H.; Li, L.; Kibue, G.W.; Lu, H.; Zheng, J.; Pan, G. Biochar–Manure Compost in Conjunction with Pyroligneous Solution Alleviated Salt Stress and Improved Leaf Bioactivity of Maize in a Saline Soil from Central China: A 2-year Field Experiment. J. Sci. Food Agric. 2015, 95, 1321–1327. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.; Li, Y.; Yang, J.; Li, N.; An, N. Effects of Biochar and Straw Application on the Physicochemical and Biological Properties of Paddy Soils in Northeast China. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saysel, A.K.; Barlas, Y. A Dynamic Model of Salinization on Irrigated Lands. Ecol. Model. 2001, 139, 177–199. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Wang, J.; Odinga, E.S.; Zhang, W.; Zhou, X.; Yang, B.; Waigi, M.G.; Gao, Y. Polyaromatic Hydrocarbons in Biochars and Human Health Risks of Food Crops Grown in Biochar-Amended Soils: A Synthesis Study. Environ. Int. 2019, 130, 104899. [Google Scholar] [CrossRef]
- Ibragimov, A.; Sidique, S.F.; Tey, Y.S. Productivity for Sustainable Growth in Malaysian Oil Palm Production: A System Dynamics Modeling Approach. J. Clean. Prod. 2019, 213, 1051–1062. [Google Scholar] [CrossRef]
- Medici, G.; Baják, P.; West, L.J.; Chapman, P.J.; Banwart, S.A. DOC and Nitrate Fluxes from Farmland; Impact on a Dolostone Aquifer KCZ. J. Hydrol. 2021, 595, 125658. [Google Scholar] [CrossRef]
- Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Skirvin, D.; Naden, P.S.; Collins, A.L.; Ascott, M.J. The Changing Trend in Nitrate Concentrations in Major Aquifers Due to Historical Nitrate Loading from Agricultural Land across England and Wales from 1925 to 2150. Sci. Total Environ. 2016, 542, 694–705. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.; Aburto, F.; Calderón, R.; Cazanga, M.; Escudey, M. Trace Element Composition of Selected Fertilizers Used in Chile: Phosphorus Fertilizers as a Source of Long-Term Soil Contamination. Soil Sediment Contam. 2009, 18, 497–511. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Li, X.Y.; Liu, H.; Wang, B.R.; Zhu, P.; Huang, S.M.; Bao, D.J.; Li, Y.T.; So, H.B. Results from Long-Term Fertilizer Experiments in China: The Risk of Groundwater Pollution by Nitrate. NJAS-Wagening. J. Life Sci. 2011, 58, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net Annual Global Warming Potential and Greenhouse Gas Intensity in Chinese Double Rice-cropping Systems: A 3-year Field Measurement in Long-term Fertilizer Experiments. Glob. Change Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Afreh, D.; Zhang, J.; Guan, D.; Liu, K.; Song, Z.; Zheng, C.; Deng, A.; Feng, X.; Zhang, X.; Wu, Y. Long-Term Fertilization on Nitrogen Use Efficiency and Greenhouse Gas Emissions in a Double Maize Cropping System in Subtropical China. Soil Tillage Res. 2018, 180, 259–267. [Google Scholar] [CrossRef]
- Bai, Y.-C.; Chang, Y.-Y.; Hussain, M.; Lu, B.; Zhang, J.-P.; Song, X.-B.; Lei, X.-S.; Pei, D. Soil Chemical and Microbiological Properties Are Changed by Long-Term Chemical Fertilizers That Limit Ecosystem Functioning. Microorganisms 2020, 8, 694. [Google Scholar] [CrossRef]
- Srivastav, A.L. Chapter 6—Chemical Fertilizers and Pesticides: Role in Groundwater Contamination. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Cambridge, MA, USA, 2020; pp. 143–159. ISBN 978-0-08-103017-2. [Google Scholar]
- Murtaza, G.; Riaz, U.; Aziz, H.; Shaheen, N.; Sohail, M.I.; Saleem, M.H.; Abualreesh, M.H.; Alatawi, A.; Ali, S. Health Risk Assessment, Pore Water Chemistry, and Assessment of Trace Metals Transfer from Two Untreated Sewage Sludge Types to Tomato Crop (Lycopersicon esculentum) at Different Application Levels. Sustainability 2021, 13, 12394. [Google Scholar] [CrossRef]
- Marrin, D.L. Emergent Properties of Water Resources and Associated Watershed Systems. Proceedings 2019, 48, 18. [Google Scholar] [CrossRef]
- Nicolodi, M.; Gianello, C. Understanding Soil as an Open System and Fertility as an Emergent Property of the Soil System. Sustain. Agric. Res. 2014, 4. [Google Scholar] [CrossRef]
- Medici, G.; Langman, J.B. Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA). Sustainability 2022, 14, 11349. [Google Scholar] [CrossRef]
- Bastan, M.; Ramazani Khorshid-Doust, R.; Delshad Sisi, S.; Ahmadvand, A. Sustainable Development of Agriculture: A System Dynamics Model. Kybernetes 2017, 47, 142–162. [Google Scholar] [CrossRef]
- Whyte, J.; Mijic, A.; Myers, R.J.; Angeloudis, P.; Cardin, M.-A.; Stettler, M.E.J.; Ochieng, W. A Research Agenda on Systems Approaches to Infrastructure. Civ. Eng. Environ. Syst. 2020, 37, 214–233. [Google Scholar] [CrossRef]
- Adelman, D.E.; Barton, J.H. Environmental Regulation for Agriculture: Towards a Framework to Promote Sustainable Intensive Agriculture. Stanf. Environ. Law J. 2002, 21, 3. [Google Scholar]
- Ren, C.; Xie, Z.; Zhang, Y.; Wei, X.; Wang, Y.; Sun, D. An Improved Interval Multi-Objective Programming Model for Irrigation Water Allocation by Considering Energy Consumption under Multiple Uncertainties. J. Hydrol. 2021, 602, 126699. [Google Scholar] [CrossRef]
- Elliott, J.H.; Turner, T.; Clavisi, O.; Thomas, J.; Higgins, J.P.T.; Mavergames, C.; Gruen, R.L. Living Systematic Reviews: An Emerging Opportunity to Narrow the Evidence-Practice Gap. PLOS Med. 2014, 11, e1001603. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.E.D.M.; Moussa, A.M.A.; Hinkelmann, R. Impacts of Climate Change on Water Quantity, Water Salinity, Food Security, and Socioeconomy in Egypt. Water Sci. Eng. 2021, 14, 17–27. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Statement on the State of the Global Climate in 2017; World Meteorological Organization (WMO): Geneva, Switzerland, 2018. [Google Scholar]
- Strzepek, K.; McCluskey, A. The Impacts of Climate Change on Regional Water Resources and Agriculture in Africa; World Bank Publications, Policy Research Working Paper: No. 4290; World Bank: Washington, DC, USA, 2007; License: CC BY 3.0 IGO; Available online: https://openknowledge.worldbank.org/handle/10986/7479 (accessed on 16 October 2022).
- Mora, M.; Puerto, H.; Rocamora, C.; Abadia, R. New Indicators to Discriminate the Cause of Low Energy Efficiency in Deep-Well Pumps. Water Resour. Manag. 2021, 35, 1373–1388. [Google Scholar] [CrossRef]
- Skovgaard, J.; van Asselt, H. The Politics of Fossil Fuel Subsidies and Their Reform: Implications for Climate Change Mitigation. WIREs Clim. Change 2019, 10, e581. [Google Scholar] [CrossRef]
- Turner, B.L.; Tidwell, V.; Fernald, A.; Rivera, J.A.; Rodriguez, S.; Guldan, S.; Ochoa, C.; Hurd, B.; Boykin, K.; Cibils, A. Modeling Acequia Irrigation Systems Using System Dynamics: Model Development, Evaluation, and Sensitivity Analyses to Investigate Effects of Socio-Economic and Biophysical Feedbacks. Sustainability 2016, 8, 1019. [Google Scholar] [CrossRef]
- Turner, B.L.; Menendez, H.M., III; Gates, R.; Tedeschi, L.O.; Atzori, A.S. System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles. Resources 2016, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xu, Y.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T. Efficient Irrigation Water Allocation and Its Impact on Agricultural Sustainability and Water Scarcity under Uncertainty. J. Hydrol. 2020, 586, 124888. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Rasmussen, K.; Reenberg, A.; Proud, S. A System Dynamics Approach to Land Use Changes in Agro-Pastoral Systems on the Desert Margins of Sahel. Agric. Syst. 2012, 107, 56–64. [Google Scholar] [CrossRef]
- Sušnik, J.; Vamvakeridou-Lyroudia, L.S.; Savić, D.A.; Kapelan, Z. Integrated Modelling of a Coupled Water-Agricultural System Using System Dynamics. J. Water Clim. Change 2013, 4, 209–231. [Google Scholar] [CrossRef]
- Inam, A.; Adamowski, J.; Prasher, S.; Halbe, J.; Malard, J.; Albano, R. Coupling of a Distributed Stakeholder-Built System Dynamics Socio-Economic Model with SAHYSMOD for Sustainable Soil Salinity Management–Part 1: Model Development. J. Hydrol. 2017, 551, 596–618. [Google Scholar] [CrossRef]
- Amiri, A.; Mehrjerdi, Y.Z.; Jalalimanesh, A.; Sadegheih, A. Food System Sustainability Investigation Using System Dynamics Approach. J. Clean. Prod. 2020, 277, 124040. [Google Scholar] [CrossRef]
- Chapman, A.; Darby, S. Evaluating Sustainable Adaptation Strategies for Vulnerable Mega-Deltas Using System Dynamics Modelling: Rice Agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ. 2016, 559, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Alary, V.; Messad, S.; Aboul-Naga, A.; Osman, M.A.; Abdelsabour, T.H.; Salah, A.-A.E.; Juanes, X. Multi-Criteria Assessment of the Sustainability of Farming Systems in the Reclaimed Desert Lands of Egypt. Agric. Syst. 2020, 183, 102863. [Google Scholar] [CrossRef]
- Alabdulkader, A.M.; Al-Amoud, A.I.; Awad, F.S. Adaptation of the Agricultural Sector to the Effects of Climate Change in Arid Regions: Competitive Advantage Date Palm Cropping Patterns under Water Scarcity Conditions. J. Water Clim. Change 2016, 7, 514–525. [Google Scholar] [CrossRef]
- Beyene, T.; Lettenmaier, D.P.; Kabat, P. Hydrologic Impacts of Climate Change on the Nile River Basin: Implications of the 2007 IPCC Scenarios. Clim. Change 2010, 100, 433–461. [Google Scholar] [CrossRef]
- Elshamy, M.E.; Wheater, H.S. Performance Assessment of a GCM Land Surface Scheme Using a Fine-scale Calibrated Hydrological Model: An Evaluation of MOSES for the Nile Basin. Hydrol. Process. Int. J. 2009, 23, 1548–1564. [Google Scholar] [CrossRef]
- Conway, D. The Impacts of Climate Variability and Future Climate Change in the Nile Basin on Water Resources in Egypt. Int. J. Water Resour. Dev. 1996, 12, 277–296. [Google Scholar] [CrossRef]
- Barnes, J. Uncertainty in the Signal: Modelling Egypt’s Water Futures. J. R. Anthropol. Inst. 2016, 22, 46–66. [Google Scholar] [CrossRef]
- Bushey, D.B.; Nissen, M.E. A Systematic Approach to Prioritizing Weapon System Requirements and Military Operations through Requisite Variety; Department of Defense: Washington DC, USA, 1999.
- Blasko, D. PLA Ground Force Modernization and Mission Diversification: Underway in All Military Regions. In Right Sizing the People’s Liberation Army: Exploring the Contours of China’s Military; Kamphausen, R., Scobell, A., Eds.; Strategic Studies Institute, U.S. Army War College Press: Carlisle, PA, USA, 2007; pp. 366–372. [Google Scholar]
- Fabozzi, F.J.; Gupta, F.; Markowitz, H.M. The Legacy of Modern Portfolio Theory. J. Invest. 2002, 11, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Gruszka, J.; Szwabiński, J. Advanced Strategies of Portfolio Management in the Heston Market Model. Phys. Stat. Mech. Appl. 2021, 574, 125978. [Google Scholar] [CrossRef]
- Mars, M.M.; Bronstein, J.L.; Lusch, R.F. The Value of a Metaphor: Organizations and Ecosystems. Organ. Dyn. 2012, 41, 271–280. [Google Scholar] [CrossRef]
- Frow, P.; McColl-Kennedy, J.R.; Hilton, T.; Davidson, A.; Payne, A.; Brozovic, D. Value Propositions: A Service Ecosystems Perspective. Mark. Theory 2014, 14, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.L.R.; Dupras, J. Increasing Functional Diversity of the Urban Canopy for Climate Resilience: Potential Tradeoffs with Ecosystem Services? Urban For. Urban Green. 2021, 58, 126972. [Google Scholar] [CrossRef]
- Ashby, W.R. Requisite Variety and Its Implications for the Control of Complex Systems. In Facets of Systems Science; International Federation for Systems Research International Series on Systems Science and Engineering (Vol 7); Springer: Boston, MA, USA, 1991; pp. 405–417. ISBN 978-1-4899-0720-2. [Google Scholar]
- Lerner, A.Y. Fundamentals of Cybernetics; Plenum Publishing Corporation: New York, NY, USA, 1975; ISBN 978-1-4684-1706-7. [Google Scholar]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Abou Zaki, N.; Kløve, B.; Torabi Haghighi, A. Expanding the Irrigated Areas in the MENA and Central Asia: Challenges or Opportunities? Water 2022, 14, 2560. [Google Scholar] [CrossRef]
- Shin, S.; Park, H. Achieving Cost-Efficient Diversification of Water Infrastructure System against Uncertainty Using Modern Portfolio Theory. J. Hydroinformatics 2018, 20, 739–750. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, Z.; Shao, M.; Horton, R.; Lei, T.; Qin, L.; Ma, J. A Model for Regional Optimal Allocation of Irrigation Water Resources under Deficit Irrigation and Its Applications. Agric. Water Manag. 2002, 52, 139–154. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M. Sustainability Assessment of Agricultural Rainwater Harvesting: Evaluation of Alternative Crop Types and Irrigation Practices. PloS ONE 2019, 14, e0216452. [Google Scholar] [CrossRef]
- Sala, L.; Serra, M. Towards Sustainability in Water Recycling. Water Sci. Technol. 2004, 50, 1–7. [Google Scholar] [CrossRef]
- Zanni, S.; Cipolla, S.S.; di Fusco, E.; Lenci, A.; Altobelli, M.; Currado, A.; Maglionico, M.; Bonoli, A. Modeling for Sustainability: Life Cycle Assessment Application to Evaluate Environmental Performance of Water Recycling Solutions at the Dwelling Level. Sustain. Prod. Consum. 2019, 17, 47–61. [Google Scholar] [CrossRef]
- Negm, A.M. Conventional Water Resources and Agriculture in Egypt; Negm., A.M., Ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-95064-8. [Google Scholar]
- Akiça, B. Challenges and Opportunities of Agricultural Water Reuse in Water Scarce and Salt-Affected Environments. In Proceedings of the IWA Conference on Water Reuse and Salinity Manage, Book of Abstracts, Murcia, Spain, 11–15 June 2018. [Google Scholar]
- Zhu, L.; Torres, M.; Betancourt, W.Q.; Sharma, M.; Micallef, S.A.; Gerba, C.; Sapkota, A.R.; Sapkota, A.; Parveen, S.; Hashem, F. Incidence of Fecal Indicator and Pathogenic Bacteria in Reclaimed and Return Flow Waters in Arizona, USA. Environ. Res. 2019, 170, 122–127. [Google Scholar] [CrossRef]
- Lankford, B.A.; Grasham, C.F. Agri-Vector Water: Boosting Rainfed Agriculture with Urban Water Allocation to Support Urban–Rural Linkages. Water Int. 2021, 46, 432–450. [Google Scholar] [CrossRef]
- Haddad, M.; Lindner, K. Sustainable Water Demand Management versus Developing New and Additional Water in the Middle East: A Critical Review. Water Policy 2001, 3, 143–163. [Google Scholar] [CrossRef]
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination Techniques—A Review of the Opportunities for Desalination in Agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- Vieira, A.S.; Beal, C.D.; Ghisi, E.; Stewart, R.A. Energy Intensity of Rainwater Harvesting Systems: A Review. Renew. Sustain. Energy Rev. 2014, 34, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Soto-García, M.; Martin-Gorriz, B.; García-Bastida, P.A.; Alcon, F.; Martínez-Alvarez, V. Energy Consumption for Crop Irrigation in a Semiarid Climate (South-Eastern Spain). Energy 2013, 55, 1084–1093. [Google Scholar] [CrossRef]
- Nayar, K.G.; Thiel, G.P.; Winter, A.G.V.; Lienhard, J.H.V. Energy Requirement of Alternative Technologies for Desalinating Groundwater for Irrigation. In Proceedings of the International Desalination Association Word Congress, San Diego, CA, USA, 30 August–4 September 2015. [Google Scholar]
- El-Kady, M.; El-Shibini, F. Desalination in Egypt and the Future Application in Supplementary Irrigation. Desalination 2001, 136, 63–72. [Google Scholar] [CrossRef]
- Butera, I.; Balestra, R. Estimation of the Hydropower Potential of Irrigation Networks. Renew. Sustain. Energy Rev. 2015, 48, 140–151. [Google Scholar] [CrossRef]
- Carroquino, J.; Dufo-López, R.; Bernal-Agustín, J.L. Sizing of Off-Grid Renewable Energy Systems for Drip Irrigation in Mediterranean Crops. Renew. Energy 2015, 76, 566–574. [Google Scholar] [CrossRef]
- Shoeb, M.A.; Shafiullah, G.M. Renewable Energy Integrated Islanded Microgrid for Sustainable Irrigation—A Bangladesh Perspective. Energies 2018, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Elkadeem, M.R.; Wang, S.; Sharshir, S.W.; Atia, E.G. Feasibility Analysis and Techno-Economic Design of Grid-Isolated Hybrid Renewable Energy System for Electrification of Agriculture and Irrigation Area: A Case Study in Dongola, Sudan. Energy Convers. Manag. 2019, 196, 1453–1478. [Google Scholar] [CrossRef]
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, Economical and Environmental Impacts of Renewable Energy Systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Shafiullah, G.M.; Oo, A.M.; Jarvis, D.; Ali, A.S.; Wolfs, P. Potential Challenges: Integrating Renewable Energy with the Smart Grid. In Proceedings of the 2010 20th Australasian Universities Power Egnieering Conference, Christchurch, New Zealand, 5–8 December 2010; pp. 1–6. [Google Scholar]
- Anees, A.S. Grid Integration of Renewable Energy Sources: Challenges, Issues and Possible Solutions. In Proceedings of the 20112 IEEE 5th India International Conference on Power Electronics, Delhi, India, 6–8 December 2012; pp. 1–6. [Google Scholar]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Gloria, A.; Dionisio, C.; Simões, G.; Cardoso, J.; Sebastião, P. Water Management for Sustainable Irrigation Systems Using Internet-of-Things. Sensors 2020, 20, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, B.; Rufí-Salís, M.; Parada, F.; Gabarrell, X.; Gruden, C. Intelligent Urban Irrigation Systems: Saving Water and Maintaining Crop Yields. Agric. Water Manag. 2019, 226, 105812. [Google Scholar] [CrossRef]
- Shi, J.; Wu, X.; Zhang, M.; Wang, X.; Zuo, Q.; Wu, X.; Zhang, H.; Ben-Gal, A. Numerically Scheduling Plant Water Deficit Index-Based Smart Irrigation to Optimize Crop Yield and Water Use Efficiency. Agric. Water Manag. 2021, 248, 106774. [Google Scholar] [CrossRef]
- Gimpel, H.; Graf-Drasch, V.; Hawlitschek, F.; Neumeier, K. Designing Smart and Sustainable Irrigation: A Case Study. J. Clean. Prod. 2021, 315, 128048. [Google Scholar] [CrossRef]
- Vermeulen, P.; Nguyen, H.-Q.; Nam, N.; Pham, H.; Nguyen Tien, T.; Thanh, T.; Dam, R. Groundwater Modeling for the Mekong Delta Using iMOD. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Gany, A.H.A.; Sharma, P.; Singh, S. Global Review of Institutional Reforms in the Irrigation Sector for Sustainable Agricultural Water Management, Including Water Users’ Associations. Irrig. Drain. 2019, 68, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Asthana, A.N. Increasing Production Efficiency of Irrigation Systems through Stakeholder Participation. Water Policy 2022, 24, 1061–1072. [Google Scholar] [CrossRef]
- Ricart, S.; Rico, A.; Kirk, N.; Bülow, F.; Ribas-Palom, A.; Pavón, D. How to Improve Water Governance in Multifunctional Irrigation Systems? Balancing Stakeholder Engagement in Hydrosocial Territories. Int. J. Water Resour. Dev. 2019, 35, 491–524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Aziz, D.; El-sayed, M.E.A.; Hazman, M.; Almas, L.; McFarland, M.; El Din, A.S.; Burian, S.J. Systems Thinking for Planning Sustainable Desert Agriculture Systems with Saline Groundwater Irrigation: A Review. Water 2022, 14, 3343. https://doi.org/10.3390/w14203343
Shin S, Aziz D, El-sayed MEA, Hazman M, Almas L, McFarland M, El Din AS, Burian SJ. Systems Thinking for Planning Sustainable Desert Agriculture Systems with Saline Groundwater Irrigation: A Review. Water. 2022; 14(20):3343. https://doi.org/10.3390/w14203343
Chicago/Turabian StyleShin, Sangmin, Danyal Aziz, Mohamed E. A. El-sayed, Mohamed Hazman, Lal Almas, Mike McFarland, Ali Shams El Din, and Steven J. Burian. 2022. "Systems Thinking for Planning Sustainable Desert Agriculture Systems with Saline Groundwater Irrigation: A Review" Water 14, no. 20: 3343. https://doi.org/10.3390/w14203343