Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Testing Description and Locations
2.3. Aeration System
2.4. Data Collection and Instrumentation
2.5. Oxygen Transfer Evaluation
2.6. Statistical Analysis
3. Results
3.1. KLa, SOTR, and SOTE for Different Bed Configurations and Environmental Conditions (Altitude)
3.2. Normalized SOTR and SOTE
4. Discussion
4.1. Influence of Airflow Rate
4.2. Influence of Environmental Conditions
4.3. Influence of Inner Container on Aeration System
4.4. Influence of Gravel Size
4.5. Complementary Remarks
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brix, H.; Schierup, H.-H.; Arias, C.A. Twenty years experience with constructed wetland systems in Denmark–what did we learn? Water Sci. Technol. 2007, 56, 63–68. [Google Scholar] [CrossRef]
- Vera, I.; García, J.; Sáez, K.; Moragas, L.; Vidal, G. Performance evaluation of eight years experience of constructed wetland systems in Catalonia as alternative treatment for small communities. Ecol. Eng. 2011, 37, 364–371. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Ortigara, A.; Foladori, P.; Andreottola, G. Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry. Water Sci. Technol. 2011, 64, 409. [Google Scholar] [CrossRef] [PubMed]
- Boog, J.; Nivala, J.; Aubron, T.; Wallace, S.; van Afferden, M.; Müller, R. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland. Bioresour. Technol. 2014, 162, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Nivala, J.; Murphy, C.; Freeman, A. Recent Advances in the Application, Design, and Operations & Maintenance of Aerated Treatment Wetlands. Water 2020, 12, 1188. [Google Scholar] [CrossRef] [Green Version]
- Baquero-Rodríguez, G.; Lara-Borrero, J.; Nolasco, D.; Rosso, D. A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Water Environ. Res. 2018, 90, 431–441. [Google Scholar] [CrossRef]
- Metcalf and Eddy. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Rosso, D. Aeration, Mixing, and Energy: Bubbles and Sparks, 1st ed.; IWA Publishing: London, UK, 2018. [Google Scholar]
- Jiang, L.; Chen, L.; Zhou, Z.; Sun, D.; Li, Y.; Zhang, M.; Liu, Y.; Du, S.; Chen, G.; Yao, J. Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresour. Technol. 2020, 307, 123197. [Google Scholar] [CrossRef]
- ASCE/EWRI 2-06; Measurement of Oxygen Transfer in Clean Water ASCE Standard. American Society of Civil Engineers (ASCE): Reston, VA, USA, 2007. [CrossRef]
- American Society of Civil Engineers (ASCE). Standard Guidelines for In-Process Oxygen Transfer Testing, 2nd ed.; American Society of Civil Engineers: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Boog, J.; Kalbacher, T.; Nivala, J.; Forquet, N.; van Afferden, M.; Müller, R.A. Modeling the relationship of aeration, oxygen transfer and treatment performance in aerated horizontal flow treatment wetlands. Water Res. 2019, 157, 321–334. [Google Scholar] [CrossRef]
- Boog, J.; Nivala, J.; Kalbacher, T.; van Afferden, M.; Müller, R.A. Do wastewater pollutants impact oxygen transfer in aerated horizontal flow wetlands? Chem. Eng. J. 2020, 383, 123173. [Google Scholar] [CrossRef]
- Freeman, A.; Surridge, B.; Matthews, M.; Stewart, M.; Haygarth, P. New approaches to enhance pollutant removal in artificially aerated wastewater treatment systems. Sci. Total Environ. 2018, 627, 1182–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rous, V.; Vymazal, J.; Hnátková, T. Treatment wetlands aeration efficiency: A review. Ecol. Eng. 2019, 136, 62–67. [Google Scholar] [CrossRef]
- Amand, L.; Olsson, G.; Carlsson, B. Aeration control—A review. Water Sci. Technol. 2013, 67, 2374–2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araya, F.; Vera, I.; Sáez, K.; Vidal, G. Effects of aeration and natural zeolite on ammonium removal during the treatment of sewage by mesocosm-scale constructed wetlands. Environ. Technol. 2016, 37, 1811–1820. [Google Scholar] [CrossRef]
- DWA-A 262E; Principles for Dimensioning, Construction and Operation of Wastewater Treatment Plants with Planted and Unplanted Filters for Treatment of Domestic and Municipal Wastewater: Grundsätze für Bemessung, Bau und Betrieb von Kläranlagen mit Bepflanzten und Unbepflanzten Filtern zur Reinigung Häuslichen und Kommunalen Abwassers. German Association for Water, Wastewater, and Waste (DWA): Hennef, Germany, 2017. Available online: https://webshop.dwa.de/de/dwa-a-262-waste-water-treatment-plants-11-2017.html (accessed on 31 January 2019).
- Uggetti, E.; Hughes-Riley, T.; Morris, R.H.; Newton, M.I.; Trabi, C.L.; Hawes, P.; Puigagut, J.; García, J. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland. Sci. Total Environ. 2016, 559, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Von Sperling, M. Basic Principles of Wastewater Treatment, 1st ed.; IWA Publishing: London, UK, 2007. [Google Scholar]
- Stenstrom, M.; Kartiki, S.N. DO Parameter Estimation Program, version 3.0.3; UCLA—Civil and Environmental Engineering Department: Los Angeles, CA, USA, 2012; Available online: http://www.seas.ucla.edu/stenstro/DOPar3-0-3.zip (accessed on 30 March 2019).
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Statistical Software; Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina: Córdoba, Argentina, 2019; Available online: http://www.infostat.com.ar (accessed on 30 December 2018).
- Du, Y.; Chen, F.; Zhou, L.; Qiu, T.; Sun, J. Effects of different layouts of fine-pore aeration tubes on sewage collection and aeration in rectangular water tanks. Aquac. Eng. 2020, 89, 102060. [Google Scholar] [CrossRef]
- Rosso, D.; Larson, L.E.; Stenstrom, M.K. Surfactant effects on alpha factors in full-scale wastewater aeration systems. Water Sci. Technol. 2006, 54, 143–153. [Google Scholar] [CrossRef]
- Rosso, D.; Huo, D.L.; Stenstrom, M.K. Effects of interfacial surfactant contamination on bubble gas transfer. Chem. Eng. Sci. 2006, 61, 5500–5514. [Google Scholar] [CrossRef]
- Baquero-Rodríguez, A.; Martínez, S.; Acuña, J.; Nolasco, D.; Rosso, D. How elevation dictates technology selection in biological wastewater treatment. J. Environ. Manag. 2022, 307, 114588. [Google Scholar] [CrossRef]
- Benson, B.B.; Krause, D. The Concentration and Isotopic Fractionation of Gases Dissolved in Freshwater in Equilibrium with the Atmosphere. 1. Oxygen. Limnol. Oceanogr. 1980, 25, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Benson, B.B.; Krause, D. The Concentration and Isotopic Fractionation of Oxygen Dissolved in Freshwater and Seawater in Equilibrium with the Atmosphere. Limnol. Oceanogr. 1984, 29, 620–632. [Google Scholar] [CrossRef]
- Van Oirschot, D.; Wallace, S.; Van Deun, R. Wastewater treatment in a compact intensified wetland system at the Badboot: A floating swimming pool in Belgium. Environ. Sci. Pollut. Res. 2015, 22, 12870–12878. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Baserba, M.; Asvapathanagul, P.; Park, H.; Kim, T.; Baquero-Rodriguez, G.; Olson, B.H.; Rosso, D. Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs. Sci. Total Environ. 2018, 639, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Vera, I.; Sáez, K.; Vidal, G. Performance of 14 full-scale sewage treatment plants: Comparison between four aerobic technologies regarding effluent quality, sludge production and energy consumption. Environ. Technol. 2013, 34, 2267–2275. [Google Scholar] [CrossRef]
Location | Altitude (m.a.s.l) | Atmospheric Pressure (Atm) | Water Temperature (°C) | Oxygen Solubility (mg/L) | Airflow Rate | |||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | ||||||||
L/min | m3/m2-h | L/min | m3/m2-h | L/min | m3/m2-h | |||||
1 * | 102 | 0.99 | 11.4–16.5 | 10.82–9.67 | 0.7 | 2.1 | 1.5 | 4.5 | 3.6 | 10.7 |
2 ** | 2550 | 0.76 | 13.2–21.5 | 7.94–6.66 | 0.7 | 2.1 | 1.6 | 4.8 | 3.6 | 10.7 |
Column No | Airflow Rate | KLa (1/h) | SOTR (kgO2/h) | SOTE (%) | |||
---|---|---|---|---|---|---|---|
Location 1 | Location 2 | Location 1 | Location 2 | Location 1 | Location 2 | ||
1 | Low | 11.29 ± 1.04 a | 6.94 ± 0.66 a | 2.29 ± 0.16 a | 1.86 ± 0.15 a | 19.72 ± 1.42 a | 15.78 ± 1.23 a |
Medium | 12.95 ± 2.47 a,b | 12.75 ± 1.17 b | 2.58 ± 0.47 a | 2.99 ± 0.32 b | 10.38 ± 1.91 a | 11.49 ± 1.25 b | |
High | 29.42 ± 1.53 b | 21.48 ± 2.10 c | 6.55 ± 0.15 a | 4.54 ± 0.30 c | 10.99 ± 0.25 a | 7.60 ± 0.50 c | |
2 | Low | 19.15 ± 0.75 a | 6.14 ± 0.56 a | 1.85 ± 0.09 a | 0.77 ± 0.07 a | 15.93 ± 0.81 a | 6.56 ± 0.58 a |
Medium | 24.06 ± 1.73 a,b | 13.44 ± 1.04 a,b | 2.32 ± 0.20 a,b | 1.18 ± 1.02 a | 9.32 ± 0.79 a,b | 7.17 ± 0.69 b | |
High | 44.74 ± 1.95 b | 15.81 ± 1.20 b | 4.17 ± 0.10 b | 1.79 ± 0.14 a | 6.98 ± 0.17 b | 2.99 ± 0.23 b | |
3 | Low | 14.40 ± 0.17 a | 8.79 ± 0.37 a | 1.60 ± 0.06 a | 1.80 ± 0.12 a | 13.81 ± 0.52 a | 15.34 ± 1.03 a |
Medium | 20.15 ± 3.45 a,b | 14.11 ± 1.99 b | 2.32 ± 0.20 a,b | 2.36 ± 0.24 a,b | 9.32 ± 1.50 a,b | 9.07 ± 0.91 a,b | |
High | 32.98 ± 3.52 b | 19.54 ± 6.28 b | 3.66 ± 0.37 b | 3.59 ± 1.20 b | 6.13 ± 0.61 b | 6.00 ± 2.01 b | |
4 | Low | 12.69 ± 1.26 a | 4.38 ± 0.51 a | 1.10 ± 0.11 a | 0.53 ± 0.09 a | 9.49 ± 0.98 a | 4.52 ± 0.80 a |
Medium | 16.06 ± 2.79 a,b | 10.30 ± 3.06 a,b | 1.61 ± 0.35 a,b | 1.11 ± 0.32 a,b | 6.47 ± 1.40 a,b | 4.25 ± 1.22 a,b | |
High | 23.61 ± 1.94 b | 17.28 ± 2.94 b | 2.08 ± 0.13 b | 1.69 ± 0.21 b | 3.49 ± 0.21 b | 2.82 ± 0.36 b |
Airflow Rate | Column No | Comparison between Columns | Comparison between Locations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KLa | SOTR | SOTE | KLa | SOTR | SOTE | ||||||||
L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | L1 | L2 | ||
Low | 1 | 0.0216 | <0.001 | 0.0156 | 0.0001 | 0.0156 | 0.0001 | 0.0121 | 0.0121 | 0.0121 | |||
2 | 0.0238 | 0.0238 | 0.0238 | ||||||||||
3 | 0.0238 | 0.0952 | 0.0952 | ||||||||||
4 | 0.0167 | 0.0167 | 0.0167 | ||||||||||
Medium | 1 | 0.037 | 0.2496 | 0.077 | 0.0017 | 0.077 | 0.0013 | 0.9371 | 0.2168 | 0.4685 | |||
2 | 0.1 | 0.1 | 0.1 | ||||||||||
3 | 0.1 | 0.99 | 0.99 | ||||||||||
4 | 0.0571 | 0.2286 | 0.2286 | ||||||||||
High | 1 | 0.0216 | 0.0437 | 0.0156 | 0.0023 | 0.0156 | 0.0023 | 0.0167 | 0.0167 | 0.0167 | |||
2 | 0.0571 | 0.0571 | 0.0571 | ||||||||||
3 | 0.0571 | 0.4 | 0.4 | ||||||||||
4 | 0.0357 | 0.0357 | 0.0357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-Puerto, I.; Campal, J.; Martínez, S.; Cortés-Rico, L.; Coy, H.; Tan, S.; Arias, C.A.; Baquero-Rodríguez, G.; Rosso, D. Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands. Water 2022, 14, 3284. https://doi.org/10.3390/w14203284
Vera-Puerto I, Campal J, Martínez S, Cortés-Rico L, Coy H, Tan S, Arias CA, Baquero-Rodríguez G, Rosso D. Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands. Water. 2022; 14(20):3284. https://doi.org/10.3390/w14203284
Chicago/Turabian StyleVera-Puerto, Ismael, José Campal, Sandra Martínez, Laura Cortés-Rico, Hadher Coy, Sheyie Tan, Carlos A. Arias, Gustavo Baquero-Rodríguez, and Diego Rosso. 2022. "Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands" Water 14, no. 20: 3284. https://doi.org/10.3390/w14203284
APA StyleVera-Puerto, I., Campal, J., Martínez, S., Cortés-Rico, L., Coy, H., Tan, S., Arias, C. A., Baquero-Rodríguez, G., & Rosso, D. (2022). Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands. Water, 14(20), 3284. https://doi.org/10.3390/w14203284