Effects of Land Consolidation and Precipitation Changes on the Balance of Water Supply and Demand in Western Jilin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Land Use
2.2.2. Precipitation and Reference Evapotranspiration
2.2.3. Biophysical Table
2.2.4. Z Parameter
2.3. Method
2.3.1. Water-Yield Model
2.3.2. Water-Demand Model
2.3.3. Supply/Demand Ratio
2.3.4. Annual Precipitation Variation
3. Results
3.1. Land-Cover Change before and after Land Consolidation
3.2. The Balance of Water Supply-and-Demand Change before and after Land Consolidation
3.2.1. Level of Spatial Distribution Characteristics in Region
3.2.2. Level of Spatial Distribution Characteristics in Counties
3.3. The Impact of Precipitation Changes on the Balance of Water Supply and Demand
3.3.1. Annual Precipitation Division of Dry and Wet Years
3.3.2. The Balance of Water Supply-and-Demand Change in Regions
3.3.3. The Balance of Water Supply-and-Demand Change in Counties
4. Discussion
4.1. Analysis of the Influence of Land Consolidation on Ecology and Water Resources Supply and Demand
4.2. Analysis of the Influence of Precipitation Change on Water Supply and Demand
4.3. Uncertainty in Water Supply and Demand Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C. Nature’s Service: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem Services in Decision Making: Time to Deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Mullin, M. The effects of drinking water service fragmentation on drought-related water security. Science 2020, 368, 274–277. [Google Scholar] [CrossRef]
- Das, R.; Laishram, B.; Jawed, M. Public participation in urban water supply projects—The case of South-West Guwahati, India. Water Res. 2019, 165, 114989. [Google Scholar] [CrossRef] [PubMed]
- Anjinho, P.D.; Barbosa, M.; Mauad, F.F. Evaluation of InVEST’s Water Ecosystem Service Models in a Brazilian Subtropical Basin. Water 2022, 14, 1559. [Google Scholar] [CrossRef]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584, 118–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.F.; Qi, J.Y.; Wu, H.; Zeng, Y.; Shui, W.; Zeng, J.Y.; Zhang, X.S. Freeze-Thaw cycle representation alters response of watershed hydrology to future climate change. Catena 2020, 195, 104767. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Zuo, S.; Yang, L.; Dou, P.; Ho, H.C.; Dai, S.; Ma, W.; Ren, Y.; Huang, C. The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in central China. Sci. Total Environ. 2021, 764, 144609. [Google Scholar] [CrossRef]
- Zawadzka, J.E.; Harris, J.A.; Corstanje, R. Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landsc. Urban Plan. 2021, 214, 104163. [Google Scholar] [CrossRef]
- Sánchez-Canales, M.; Benito, A.L.; Passuello, A.; Terrado, M.; Ziv, G.; Acuña, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Rajbanshi, J.; Das, S. Changes in carbon stocks and its economic valuation under a changing land use pattern-A multitemporal study in Konar catchment, India. Land Degrad. Dev. 2021, 32, 3573–3587. [Google Scholar] [CrossRef]
- Hughes, J.; Petheram, C.; Taylor, A.; Raiber, M.; Davies, P.; Levick, S. Water Balance of a Small Island Experiencing Climate Change. Water 2022, 14, 1771. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Marquès, M.; Bangash, R.F.; Kumar, V.; Sharp, R.; Schuhmacher, M. The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin. J. Hazard. Mater. 2013, 263, 224–232. [Google Scholar] [CrossRef]
- Wei, P.J.; Chen, S.Y.; Wu, M.H.; Deng, Y.F.; Xu, H.J.; Jia, Y.L.; Liu, F. Using the Invest Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Fu, J.; Wei, W. Effects of the Grain for Green Program on the water ecosystem services in an arid area of China—Using the Shiyang River Basin as an example. Ecol. Indic. 2019, 104, 659–668. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Haldrup, N.O. Agreement based land consolidation—In perspective of new modes of governance. Land Use Policy 2015, 46, 163–177. [Google Scholar] [CrossRef]
- Paul, B.; Bhattacharya, S.S.; Gogoi, N. Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway. Sci. Total Environ. 2021, 762, 143171. [Google Scholar] [CrossRef]
- Han, X.L.; Lv, P.Y.; Zhao, S.; Sun, Y.; Yan, S.Y.; Wang, M.H.; Han, X.N.; Wang, X.R. The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau. Land 2018, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Yang, D.; Wang, Y.; Yang, H. Global calibration of Hargreaves equation and its applicability in China. Adv. Water Sci. 2011, 22, 160–167. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.11.0 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2020. [Google Scholar]
- Xiang, H.X.; Wang, Z.M.; Mao, D.H.; Zhang, J.; Xi, Y.B.; Du, B.J.; Zhang, B. What did China’s National Wetland Conservation Program Achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain. J. Environ. Manag. 2020, 267, 110623. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Ren, M.; Mao, D. Supply and demand analysis and service flow research of water production service in Lianshui River Basin. Ecol. Sci. 2021, 40, 186–195. [Google Scholar]
- Yu, Y.; Zhou, T.Y.; Zhao, R.; Li, Z.L.; Shen, C. A scenario analysis-based optimal management of water resources supply and demand balance: A case study of Chengdu, China. PLoS ONE 2022, 17, e0267920. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.P.; Shi, X.P.; Li, J.J. The characteristics of wet and dry spells for the diverse climate in China. Glob. Planet. Chang. 2017, 149, 14–19. [Google Scholar] [CrossRef]
- Niu, J.; Wu, Z.; Jia, H. Quantitative Assessment for Impacts of Precipitation Variation and Runoff-Yield Change on Fenhe River Runoff. J. Jilin Univ. Earth Sci. Ed. 2016, 46, 814–823. [Google Scholar]
- GB/T 22482-2008; Standard for Hydrological Information and Hydrological Forecasting. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2008.
- Li, Z.; Bagan, H.; Yamagata, Y. Analysis of spatiotemporal land cover changes in Inner Mongolia using self-organizing map neural network and grid cells method. Sci. Total Environ. 2018, 636, 1180–1191. [Google Scholar] [CrossRef]
- Richardson, C.J.; King, R.S.; Qian, S.; Vaithiyanathan, P.; Qualls, R.G.; Stow, C.A. Estimating ecological thresholds for phosphorus in the Everglades. Environ. Sci. Technol. 2007, 41, 8084–8091. [Google Scholar] [CrossRef]
- Eerden, M.R.; Lenselink, G.; Zijlstra, M. Long-term changes in wetland area and composition in The Netherlands affecting the carrying capacity for wintering waterbirds. Ardea 2010, 98, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Jiang, W.L.; Wu, Y.F.; Liu, Y.F.; Liang, L.J. Estimation of regional farmland irrigation water requirements and water balance in Northeast China. Environ. Sci. Pollut. R 2022, 29, 71840–71856. [Google Scholar] [CrossRef]
- Fadaeizadeh, K.; Shourian, M. Determination of the Optimal River Basin-Wide Agricultural Water Demand Quantities Meeting Satisfactory Reliability Levels. Water Resour. Manag. 2019, 33, 2665–2676. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Xu, C.H.; Tao, L.Z.; Xu, X.L. Integrating the InVEST and SDSM Model for Estimating Water Provision Services in Response to Future Climate Change in Monsoon Basins of South China. Water 2020, 12, 3199. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Peng, L.C.; Lin, Y.P.; Chen, G.W.; Lien, W.Y. Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan. Water 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Hoover, D.L.; Wilcox, K.R.; Avolio, M.L.; Koerner, S.; La Pierre, K.J.; Loik, M.E.; Luo, Y.; Sala, O.E.; Smith, M.D. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Global. Chang. Biol. 2015, 21, 2624–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; Garcia-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wu, D.; Liu, Y.; Xu, R. Multi-factor Analysis of the Effective Precipitation for Crops in Semi-arid Region. J. Irrig. Drain. 2019, 38, 101–109. [Google Scholar]
- Terrado, M.; Acuna, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
Data | Data Formats | Sources and Descriptions |
---|---|---|
Land use/cover | Grids, 30 m × 30 m resolution | The land-use data for west Jilin province in 2000, 2010, and 2018, which were downloaded from the Data Center for Resources and Environment Sciences, Chinese Academy of Sciences (http://www.resdc.cn (accessed on 28 June 2022)). |
Climate data | Grids, 30 m × 30 m resolution | The climate data include daily precipitation and temperature, which were collected from the China Meteorological Science Data Center (http://data.cma.cn (accessed on 3 March 2022)). |
Soil properties | Grids, 1 km × 1 km resolution | The soil properties data include soil available water content and root depth, which were downloaded from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn (accessed on 10 July 2022)). |
Digital elevation model | Grids, 90 m × 90 m resolution | The SRTM data are provided by the Geospatial Data Cloud site, Computer Network Information Center, and Chinese Academy of Sciences (http://www.gscloud.cn (accessed on 6 July 2022)). |
LULC Desc | Lucode | Kc | Root Depth (mm) | LULC Veg |
---|---|---|---|---|
Agricultural land | 1 | 0.7 | 600 | 1 |
Forest | 2 | 1 | 5000 | 1 |
Grassland | 3 | 0.65 | 2000 | 1 |
Waters | 4 | 1 | 1000 | 0 |
Built-up land | 5 | 0.3 | 100 | 0 |
Wetlands | 6 | 1.2 | 3000 | 0 |
Saline-alkali soil | 7 | 0.5 | 100 | 0 |
Period | Land-Use Type | I | II | III | IV | V | VI | VII | Total (2000) |
---|---|---|---|---|---|---|---|---|---|
2000–2010 | I | 23,055.37 | 429.00 | 467.37 | 37.84 | 264.16 | 264.19 | 209.24 | 24,727.17 |
II | 323.95 | 1974.77 | 107.62 | 6.54 | 15.31 | 30.62 | 40.77 | 2499.58 | |
III | 1004.45 | 138.26 | 3241.25 | 10.92 | 27.96 | 537.16 | 154.71 | 5114.71 | |
IV | 45.32 | 15.36 | 42.16 | 1323.26 | 12.59 | 138.22 | 219.51 | 1796.42 | |
V | 206.65 | 11.82 | 14.26 | 1.04 | 1342.15 | 18.85 | 3.24 | 1598.01 | |
VI | 366.47 | 24.21 | 512.93 | 83.74 | 58.05 | 6874.96 | 97.23 | 8017.59 | |
VII | 269.98 | 94.29 | 149.81 | 97.83 | 6.27 | 193.45 | 2323.52 | 3135.15 | |
Total (2010) | 25,272.19 | 2687.71 | 4535.4 | 1561.17 | 1726.49 | 8057.45 | 3048.22 | ||
2010–2018 | I | 24,608.53 | 366.08 | 78.82 | 11.80 | 118.51 | 55.44 | 32.35 | |
II | 260.35 | 2380.74 | 8.35 | 16.09 | 4.26 | 5.02 | 12.68 | ||
III | 258.70 | 15.55 | 4115.32 | 33.09 | 19.33 | 64.07 | 29.08 | ||
IV | 32.60 | 1.18 | 14.36 | 1405.42 | 1.31 | 24.80 | 81.34 | ||
V | 41.34 | 3.42 | 2.64 | 11.92 | 1662.05 | 4.49 | 0.63 | ||
VI | 344.83 | 4.87 | 307.58 | 93.11 | 65.16 | 7191.26 | 50.57 | ||
VII | 221.40 | 1.67 | 166.17 | 375.12 | 4.17 | 26.97 | 2252.32 | ||
Total (2020) | 25,767.75 | 2773.51 | 4693.24 | 1946.55 | 1874.79 | 7372.05 | 2458.97 |
Year | Area | Agricultural Water | Livestock Water | Industrial Water | Domestic Water | Total Demand | Total Supply |
---|---|---|---|---|---|---|---|
2000 | Baicheng | 9.93 | 0.92 | 0.55 | 0.85 | 12.25 | 15.25 |
Songyuan | 14.43 | 1.05 | 1.45 | 1.16 | 18.10 | 21.64 | |
Western Jilin | 24.36 | 1.97 | 2.00 | 2.02 | 30.35 | 36.89 | |
2010 | Baicheng | 15.58 | 0.57 | 1.17 | 0.91 | 18.23 | 15.39 |
Songyuan | 15.79 | 1.65 | 3.30 | 1.31 | 22.05 | 21.93 | |
Western Jilin | 31.37 | 2.22 | 4.47 | 2.22 | 40.28 | 37.32 | |
2018 | Baicheng | 21.69 | 1.10 | 0.52 | 0.81 | 24.12 | 15.72 |
Songyuan | 22.20 | 1.07 | 1.02 | 1.18 | 25.47 | 22.10 | |
Western Jilin | 43.89 | 2.16 | 1.54 | 1.99 | 49.59 | 37.82 |
Precipitation | Conditions | Baicheng | Daan | Qianan | Qianguo | Tongyu | Changling | Fuyu |
---|---|---|---|---|---|---|---|---|
Wet | Max | 717.3 | 743.0 | 772.0 | 646.5 | 580.2 | 716.2 | 860.5 |
Mean | 545.7 | 569.6 | 575.1 | 585.6 | 512.8 | 614.1 | 730.0 | |
Average | 394.2 | 417.4 | 421.6 | 439.5 | 384.6 | 439.5 | 521.4 | |
Dry | Max | 244.4 | 287.5 | 282.9 | 299.7 | 257.5 | 299.9 | 338.6 |
Mean | 152.1 | 241.1 | 220.3 | 243.2 | 194.4 | 258.9 | 231.4 |
Precipitation Conditions | Baicheng | Songyuan | Western Jilin | |||
---|---|---|---|---|---|---|
Supply | Demand | Supply | Demand | Supply | Demand | |
Wet year | 34.46 | 24.12 | 46.03 | 25.47 | 80.49 | 49.59 |
Average year | 15.72 | 24.12 | 22.10 | 25.47 | 37.82 | 49.59 |
Dry year | 3.83 | 24.12 | 6.96 | 25.47 | 10.79 | 49.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Yu, H.; Yang, L.; Wang, X.; Zou, Y. Effects of Land Consolidation and Precipitation Changes on the Balance of Water Supply and Demand in Western Jilin. Water 2022, 14, 3206. https://doi.org/10.3390/w14203206
Zhu M, Yu H, Yang L, Wang X, Zou Y. Effects of Land Consolidation and Precipitation Changes on the Balance of Water Supply and Demand in Western Jilin. Water. 2022; 14(20):3206. https://doi.org/10.3390/w14203206
Chicago/Turabian StyleZhu, Mingbo, Han Yu, Liang Yang, Xiaohai Wang, and Yuanchun Zou. 2022. "Effects of Land Consolidation and Precipitation Changes on the Balance of Water Supply and Demand in Western Jilin" Water 14, no. 20: 3206. https://doi.org/10.3390/w14203206