Are UK Rivers Getting Saltier and More Alkaline?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection
2.3. Data Pre-Processing
2.4. Water Quality Data Analysis
2.5. Correlation Coefficient Calculation
3. Results
3.1. Trends of Conductivity and pH
3.1.1. The Regionality of Conductivity
3.1.2. The Seasonality of Conductivity
3.1.3. The Regionality of pH
3.1.4. The Seasonality of pH
3.2. Comparison of Conductivity and pH between All Rivers
4. Discussion and Conclusions
4.1. Reasons for the Trends of River Conductivity
4.2. Reasons for the Trends of River pH
4.3. Potential Effects of Extreme River Conductivity and pH
4.4. Limitations and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M.; et al. Freshwater Salinization Syndrome: From Emerging Global Problem to Managing Risks; Springer: Cham, Switzerland, 2021; Volume 0123456789, ISBN 0123456789. [Google Scholar]
- Iglesias, M.C.A. A review of recent advances and future challenges in freshwater salinization. Limnetica 2020, 39, 185–211. [Google Scholar] [CrossRef]
- Lopatina, T.; Anishchenko, O.; Oskina, N.; Zadereev, E. Threshold concentrations of the road salt for adverse effects on females and resting eggs of cladoceran Moina macrocopa. Aquat. Ecol. 2021, 55, 283–297. [Google Scholar] [CrossRef]
- Kaushal, S.S. Increased Salinization Decreases Safe Drinking Water. Environ. Sci. Technol. 2016, 50, 2765–2766. [Google Scholar] [CrossRef] [PubMed]
- Feistel, R.; Wielgosz, R.; Bell, S.A.; Camoes, M.F.; Cooper, J.R.; Dexter, P.; Dickson, A.G.; Fisicaro, P.; Harvey, A.H.; Heinonen, M.; et al. Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview. Metrologia 2015, 53, R1. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardon, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 206. [Google Scholar] [CrossRef]
- Oude Essink, G.H.P. Improving fresh groundwater supply—Problems and solutions. Ocean Coast. Manag. 2001, 44, 429–449. [Google Scholar] [CrossRef]
- Keilholz, P.; Disse, M.; Halik, Ü. Effects of land use and climate change on groundwater and ecosystems at the middle reaches of the Tarim River using the MIKE SHE integrated hydrological model. Water 2015, 7, 3040–3056. [Google Scholar] [CrossRef]
- Jacobsen, T.; Adams, R.M. Salt and silt in ancient mesopotamian agriculture. Science 1958, 128, 1251–1258. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Williams, W.D. Salinization: Unplumbed salt in a parched landscape. Water Sci. Technol. 2001, 43, 85–91. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T. Increased salinization of fresh water in the Northeastern United States. Proc. Natl. Acad. Sci. USA 2005, 102, 13517–13520. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Utz, R.M.; Haq, S.; Gorman, J.; Grese, M. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. Sci. USA 2018, 115, E574–E583. [Google Scholar] [CrossRef] [PubMed]
- Godwin, K.S.; Hafner, S.D.; Buff, M.F. Long-term trends in sodium and chloride in the Mohawk River, New York: The effect of fifty years of road-salt application. Environ. Pollut. 2003, 124, 273–281. [Google Scholar] [CrossRef]
- Kelly, V.R.; Lovett, G.M.; Weathers, K.C.; Findlay, S.E.G.; Strayer, D.L.; Burns, D.J.; Likens, G.E. Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Environ. Sci. Technol. 2007, 42, 410–415. [Google Scholar] [CrossRef]
- Raymond, P.A.; Oh, N.-H.; Turner, R.E.; Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 2008, 451, 449–452. [Google Scholar] [CrossRef]
- Fortner, S.K.; Lyons, W.B.; Carey, A.E.; Shipitalo, M.J.; Welch, S.A.; Welch, K.A. Silicate weathering and CO2; consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA. Biogeosciences 2012, 9, 941–955. [Google Scholar] [CrossRef]
- Evans, M.; Frick, C. The Effects of Road Salts on Aquatic Ecosystems; Environment Canada: Gatineau, QC, Canada, 2001; 298p.
- Davies, P.J.; Wright, I.A.; Jonasson, O.J.; Findlay, S.J. Impact of concrete and PVC pipes on urban water chemistry. Urban Water J. 2010, 7, 233–241. [Google Scholar] [CrossRef]
- Kaushal, S.S.; McDowell, W.H.; Wollheim, W.M. Tracking evolution of urban biogeochemical cycles: Past, present, and future. Biogeochemistry 2014, 121, 1–21. [Google Scholar] [CrossRef]
- Schulz, C.J.; Cañedo-Argüelles, M. Lost in translation: The German literature on freshwater salinization. Philos. Trans. R. Soc. B Biol. Sci. 2018, 374, 20180007. [Google Scholar] [CrossRef]
- Vidic, R.D.; Brantley, S.L.; Vandenbossche, J.M.; Yoxtheimer, D.; Abad, J.D. Impact of shale gas development on regional water quality. Science 2013, 340, 1235009. [Google Scholar] [CrossRef] [Green Version]
- Kefford, B.J.; chäfer, R.B.; Metzeling, L. Risk assessment of salinity and turbidity in Victoria (Australia) to stream insects’ community structure does not always protect functional traits. Sci. Total Environ. 2012, 415, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hart, B.T.; Lake, P.S.; Webb, J.A.; Grace, M.R. Ecological risk to aquatic systems from salinity increases. Aust. J. Bot. 2003, 51, 689–702. [Google Scholar] [CrossRef]
- Raymond, P.A.; Cole, J.J. Increase in the export of alkalinity from North America’s largest river. Science 2003, 301, 88–91. [Google Scholar] [CrossRef]
- Rosfjord, C.H.; Webster, K.E.; Kahl, J.S.; Norton, S.A.; Fernandez, I.J.; Herlihy, A.T. Anthropogenically Driven Changes in Chloride Complicate Interpretation of Base Cation Trends in Lakes Recovering from Acidic Deposition. Environ. Sci. Technol. 2007, 41, 7688–7693. [Google Scholar] [CrossRef]
- Whitmore, T.J.; Brenner, M.; Kolasa, K.V.; Kenney, W.F.; Riedinger-Whitmore, M.A.; Curtis, J.H.; Smoak, J.M. Inadvertent alkalization of a Florida lake caused by increased ionic and nutrient loading to its watershed. J. Paleolimnol. 2006, 36, 353–370. [Google Scholar] [CrossRef]
- Aquilina, L.; Poszwa, A.; Walter, C.; Vergnaud, V.; Pierson-Wickmann, A.-C.; Ruiz, L. Long-Term Effects of High Nitrogen Loads on Cation and Carbon Riverine Export in Agricultural Catchments. Environ. Sci. Technol. 2012, 46, 9447–9455. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Likens, G.E.; Utz, R.M.; Pace, M.L.; Grese, M.; Yepsen, M. Increased river alkalinization in the eastern U.S. Environ. Sci. Technol. 2013, 47, 10302–10311. [Google Scholar] [CrossRef] [PubMed]
- Mahmuduzzaman, M.; Ahmed, Z.U.; Nuruzzaman, A.K.M.; Ahmed, F.R.S. Causes of Salinity Intrusion in Coastal Belt of Bangladesh. Int. J. Plant Res. 2014, 4, 8–13. [Google Scholar] [CrossRef]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Ling, K.A.; Ashmore, M.R.; MacRory, R.B. The use of word-based models to describe the development of UK acid rain policy in the 1980s. Environ. Sci. Policy 2000, 3. [Google Scholar] [CrossRef]
- Crabtree, B.; Hickman, M.; Martin, D. Integrated water quality and environmental cost-benefit modelling for the management of the River Tame. Water Sci. Technol. 1999, 39, 221–231. [Google Scholar] [CrossRef]
- Jones, P.D. Water quality and fisheries in the Mersey estuary, England: A historical perspective. Mar. Pollut. Bull. 2006, 53, 144–154. [Google Scholar] [CrossRef]
- Coxon, G.; Addor, N.; Bloomfield, J.P.; Freer, J.; Fry, M.; Hannaford, J.; Howden, N.J.K.; Lane, R.; Lewis, M.; Robinson, E.L.; et al. CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth Syst. Sci. Data 2020, 12, 2459–2483. [Google Scholar] [CrossRef]
- Haq, S.; Kaushal, S.S.; Duan, S. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry 2018, 141, 463–486. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, Part I. Proc. R. Neth. Acad. Sci. 1950, 53, 386–392. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Biometrika 1957, 44, 298. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Dawson, R. How Significant is a Boxplot Outlier? J. Stat. Educ. 2017, 19, 143–162. [Google Scholar] [CrossRef]
- Moore, R.H.; Eadie, W.T.; Drijard, D.; James, F.E.; Roos, M.; Sadoulet, B. Statistical Methods in Experimental Physics. J. Am. Stat. Assoc. 1973, 68, 494. [Google Scholar] [CrossRef]
- Pearson, K., VII. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Buck, O.; Niyogi, D.K.; Townsend, C.R. Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environ. Pollut. 2004, 130, 287–299. [Google Scholar] [CrossRef]
- Hannaford, J.; Buys, G. Trends in seasonal river flow regimes in the UK. J. Hydrol. 2012, 475, 158–174. [Google Scholar] [CrossRef]
- Godoy, A.C.; Corrêia, A.F.; Boscolo, W.R.; Bittencourt, F.; Signor, A.; de Oliveira, J.D.; Feiden, A. Water Quality in a Reservoir used for Fish Farming in Cages in Winter and Summer Periods. Water Air Soil Pollut. 2018, 229, 63. [Google Scholar] [CrossRef]
- Abdalmogith, S.S.; Harrison, R.M. An analysis of spatial and temporal properties of daily sulfate, nitrate and chloride concentrations at UK urban and rural sites. J. Environ. Monit. 2006, 8, 691–699. [Google Scholar] [CrossRef]
- Vane, C.H.; Jones, D.G.; Lister, T.R. Mercury contamination in surface sediments and sediment cores of the Mersey Estuary, UK. Mar. Pollut. Bull. 2009, 58, 940–946. [Google Scholar] [CrossRef]
- Shimkus, C.E.; Ting, M.; Booth, J.F.; Adamo, S.B.; Madajewicz, M.; Kushnir, Y.; Rieder, H. Winter storm intensity, hazards, and property losses in the New York tristate area. Ann. N.Y. Acad. Sci. 2017, 1400, 65–80. [Google Scholar] [CrossRef] [PubMed]
- FHWA. Highway Statistics Series; FHWA: Washington, DC, USA, 2021; pp. 3–6.
- Transport Department. Road Lengths in Great Britain: 2020. Available online: https://www.gov.uk/government/statistics/road-lengths-in-great-britain-2020 (accessed on 15 June 2021).
- Rivett, M.O.; Cuthbert, M.O.; Gamble, R.; Connon, L.E.; Pearson, A.; Shepley, M.G.; Davis, J. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters. Sci. Total Environ. 2016, 565, 324–338. [Google Scholar] [CrossRef]
- Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P. Interrelationships among landscapes, NDVI, and stream water quality in the U.S. Central Plains. Ecol. Appl. 2002, 12, 1702–1718. [Google Scholar] [CrossRef]
- Rasel, H.M.; Hasan, M.R.; Ahmed, B.; Miah, M.S.U. Investigation of soil and water salinity, its effect on crop production and adaptation strategy. Int. J. Water Resour. Environ. Eng. 2013, 5, 475–481. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Langford, T.E.L.; Shaw, P.J.; Howard, S.R.; Ferguson, A.J.D.; Ottewell, D.; Eley, R. Ecological recovery in a river polluted to its sources: The River Tame in the English Midlands. In Ecology of Industrial Pollution; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kim, L.-H.; D’Arcy, B.J.; Ibanez, M.; Maniquiz-Redillas, M. Industrial estates as sources of water pollution. In Wealth Creation without Pollution: Designing for Industry, Ecobusiness Parks and Industrial Estates; IWA Publishing: London, UK, 2018. [Google Scholar]
- Chu, H.-J.; Liu, C.-Y.; Wang, C.-K. Identifying the Relationships between Water Quality and Land Cover Changes in the Tseng-Wen Reservoir Watershed of Taiwan. Int. J. Environ. Res. Public Health 2013, 10, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Sarma, V.V.S.S.; Paul, Y.S.; Vani, D.G.; Murty, V.S.N. Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal. Cont. Shelf Res. 2015, 107, 132–140. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhu, Z.; Kuang, Y. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China. Environ. Monit. Assess. 2006, 120, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Jun Xu, Y.; Li, S. Rapid urbanization effects on partial pressure and emission of CO2 in three rivers with different urban intensities. Ecol. Indic. 2021, 125, 107515. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G.; Fetter, W. Dispersion of atmospheric air pollution in summer and winter season. Environ. Monit. Assess. 2017, 189, 605. [Google Scholar] [CrossRef] [PubMed]
- Greenstone, M. Did the Clean Air Act cause the remarkable decline in sulfur dioxide concentrations? J. Environ. Econ. Manag. 2004, 47, 585–611. [Google Scholar] [CrossRef]
- Millar, M.A.; Burnside, N.M.; Yu, Z. District heating challenges for the UK. Energies 2019, 12, 310. [Google Scholar] [CrossRef]
- Kirk, G.J.D.; Bellamy, P.H.; Lark, R.M. Changes in soil pH across England and Wales in response to decreased acid deposition. Glob. Chang. Biol. 2010, 16, 3111–3119. [Google Scholar] [CrossRef]
- Passell, H.D.; Dahm, C.N.; Bedrick, E.J. Hydrological and geochemical trends and patterns in the upper rio grande, 1975 to 19991. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 111–127. [Google Scholar] [CrossRef]
- Hoagstrom, C.W. Causes and impacts of salinization in the lower pecos river. Great Plains Res. 2009, 19, 27–44. [Google Scholar]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, G.; Fatoki, O.; Persson, L.; Ekberg, A. Assessment of the impact of point source pollution from the Keiskammahoek Sewage Treatment Plant on the Keiskamma River—pH, electrical conductivity, oxygen-demanding substance (COD) and nutrients. Water SA 2001, 27, 475–480. [Google Scholar] [CrossRef]
- Hickey, C.W.; Vickers, M.L. Toxicity of ammonia to nine native New Zealand freshwater invertebrate species. Arch. Environ. Contam. Toxicol. 1994, 26, 292–298. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, P.F.; Feng, C.L.; Liu, D.Q.; Chen, J.K.; Wu, F.C. Acute Toxicity and Hazardous Concentrations of Zinc to Native Freshwater Organisms Under Different pH Values in China. Bull. Environ. Contam. Toxicol. 1234, 103, 120–126. [Google Scholar] [CrossRef] [Green Version]
River Tame | River Trent | River Mersey | River Avon | |||||
---|---|---|---|---|---|---|---|---|
h | Z | h | Z | h | Z | h | Z | |
River | 1.00 | −3.14 | 1.00 | −2.85 | 1.00 | −2.35 | 0.00 | 0.03 |
River (winter) | 1.00 | −3.01 | 1.00 | −3.12 | 1.00 | −2.10 | 0.00 | −0.97 |
River (summer) | 0.00 | −0.54 | 0.00 | 0.20 | 0.00 | −1.15 | 1.00 | 2.57 |
Upstream | 1.00 | −2.75 | 1.00 | −2.31 | 0.00 | −0.91 | 0.00 | −1.01 |
Midstream | 1.00 | −3.93 | 0.00 | −0.41 | 0.00 | 0.18 | 0.00 | 0.93 |
Downstream | 1.00 | −2.74 | 1.00 | −2.01 | 1.00 | −1.99 | 0.00 | 0.38 |
Upstream (summer) | 0.00 | −1.25 | 0.00 | 0.02 | 0.00 | −0.34 | 0.00 | 0.27 |
Upstream (winter) | 1.00 | −2.21 | 1.00 | −2.89 | 0.00 | −0.75 | 0.00 | 0.73 |
Midstream (summer) | 0.00 | −1.15 | 0.00 | 1.02 | 0.00 | 0.31 | 0.00 | 1.52 |
Midstream (winter) | 1.00 | −2.30 | 0.00 | −0.66 | 0.00 | 0.43 | 0.00 | 0.23 |
Downstream (summer) | 0.00 | −1.17 | 0.00 | −1.10 | 0.00 | −1.55 | 0.00 | 1.75 |
Downstream (winter) | 1.00 | −2.17 | 0.00 | −0.38 | 1.00 | −2.05 | 0.00 | −1.46 |
River Tame | River Trent | River Mersey | River Avon | |||||
---|---|---|---|---|---|---|---|---|
h | Z | h | Z | h | Z | h | Z | |
River | 1.00 | 13.56 | 1.00 | 9.29 | 0.00 | −0.16 | 1.00 | 2.14 |
River (winter) | 1.00 | 5.79 | 1.00 | 6.59 | 0.00 | 1.74 | 1.00 | 2.61 |
River (summer) | 1.00 | 5.48 | 1.00 | 3.14 | 0.00 | −0.52 | 0.00 | −0.38 |
Upstream | 1.00 | 7.62 | 1.00 | 6.14 | 0.00 | 1.50 | 0.00 | 1.15 |
Midstream | 1.00 | 4.27 | 1.00 | 3.86 | 0.00 | 0.85 | 0.00 | 1.63 |
Downstream | 1.00 | 7.16 | 1.00 | 2.32 | 1.00 | 2.27 | 0.00 | 1.24 |
Upstream (summer) | 1.00 | 3.58 | 1.00 | 2.87 | 0.00 | 1.04 | 0.00 | −0.25 |
Upstream (winter) | 1.00 | 2.77 | 1.00 | 3.02 | 0.00 | 1.88 | 0.00 | −0.53 |
Midstream (summer) | 0.00 | 1.75 | 0.00 | 0.09 | 0.00 | 0.18 | 0.00 | 0.25 |
Midstream (winter) | 0.00 | 1.71 | 1.00 | 2.69 | 0.00 | 0.22 | 1.00 | 2.33 |
Downstream (summer) | 0.00 | 1.86 | 0.00 | 0.34 | 0.00 | 0.04 | 0.00 | 0.54 |
Downstream (winter) | 1.00 | 3.84 | 1.00 | 2.24 | 1.00 | 2.38 | 0.00 | 1.50 |
Water quality | Factors | Tame | Trent | Mersey | Avon | ||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||
pH (annual) | Agricultural lands | 0.33 * | 0.03 * | 0.39 * | 0.02 * | 0.49 | 0.22 | 0.08 | 0.68 |
Urban lands | −0.33 | 0.11 | 0.01 | 0.97 | 0.13 | 0.52 | −0.08 | 0.71 | |
pH (summer) | Discharge (summer) | −0.01 | 0.96 | −0.47 | 0.07 | 0.46 | 0.07 | 0.38 | 0.15 |
NDVI (summer) | −0.15 | 0.53 | −0.08 | 0.74 | 0.13 | 0.60 | −0.12 | 0.61 | |
pH (winter) | Potential road salting (winter) | 0.18 | 0.51 | −0.18 | 0.51 | −0.18 | 0.51 | 0.15 | 0.57 |
Discharge (winter) | 0.08 | 0.76 | 0.22 | 0.41 | 0.26 | 0.33 | 0.04 | 0.88 | |
NDVI (winter) | 0.16 | 0.48 | 0.42 | 0.06 | 0.04 | 0.86 | 0.35 | 0.12 | |
Conductivity (annual) | Agricultural lands | 0.21 | 0.42 | 0.21 | 0.37 | −0.25 | 0.25 | 0.07 | 0.79 |
Urban lands | −0.21 | 0.42 | 0.33 | 0.14 | −0.01 | 1.00 | 0.00 | 1.00 | |
Conductivity (summer) | Discharge (summer) | −0.59 | 0.12 | −0.56 | 0.11 | −0.50 | 0.10 | −0.86 * | 0.00 * |
NDVI (summer) | −0.39 | 0.17 | −0.37 | 0.24 | −0.48 | 0.06 | 0.10 | 0.75 | |
Conductivity (winter) | Potential road salting (winter) | 0.71 * | 0.03 * | 0.54 * | 0.04 * | 0.83 * | 0.03 * | 0.25 | 0.52 |
Discharge (winter) | 0.00 | 1.00 | −0.81 * | 0.02 * | −0.71 * | 0.01 * | −0.64 | 0.07 | |
NDVI (winter) | −0.71 * | 0.01 * | −0.41 | 0.15 | −0.58 * | 0.02 * | −0.41 | 0.15 |
Water Quality | Factors | r | p |
---|---|---|---|
pH (annual) | Agricultural lands | 0.90 * | 0.04 * |
Urban lands | −0.34 | 0.66 | |
pH (summer) | Discharge (summer) | 0.29 | 0.71 |
NDVI (summer) | 0.72 | 0.28 | |
pH (winter) | Potential road salting (winter) | 0.01 | 0.99 |
Discharge (winter) | 0.31 | 0.69 | |
NDVI (winter) | 0.99 * | 0.01 * | |
Conductivity (annual) | Agricultural lands | 0.53 | 0.47 |
Urban lands | 0.84 * | 0.04 * | |
Conductivity (summer) | Discharge (summer) | 0.41 | 0.59 |
NDVI (summer) | −0.33 | 0.67 | |
Conductivity (winter) | Potential road salting (winter) | 0.95 * | 0.04 * |
Discharge (winter) | 0.37 | 0.63 | |
NDVI (winter) | 0.03 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Wu, X.; Du, S.; Wang, Q.; Han, D. Are UK Rivers Getting Saltier and More Alkaline? Water 2022, 14, 2813. https://doi.org/10.3390/w14182813
Jiang S, Wu X, Du S, Wang Q, Han D. Are UK Rivers Getting Saltier and More Alkaline? Water. 2022; 14(18):2813. https://doi.org/10.3390/w14182813
Chicago/Turabian StyleJiang, Shan, Xuan Wu, Sichan Du, Qin Wang, and Dawei Han. 2022. "Are UK Rivers Getting Saltier and More Alkaline?" Water 14, no. 18: 2813. https://doi.org/10.3390/w14182813