The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy)
Abstract
:1. Introduction
2. Study Area
2.1. Geological and Hydrogeological Setting
2.2. GW Thermal Model of the Piedmont Plain
3. Materials and Methods
4. Results and Discussion
4.1. Qualitative Analysis
4.2. Statistical Analysis
4.3. Non Parametric Test Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alley, W.; Furey, S.; Klingbeil, R.; Shivakoti, B.R.; Kabede, S.; Hirata, R. The UN-SDGs for 2030: Essential Indicators For Groundwater; International Association of Hydrogeologists: London, UK, 2017; 8p. [Google Scholar]
- van der Gun, J. Groundwater and Global Change: Trends, Opportunities and Challenges; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2012; ISBN 978-92-3-001049-2. [Google Scholar]
- 2 Level of Water Stress (Freshwater Withdrawal as a Proportion of Available Freshwater Resources). Available online: https://sdg.tracking-progress.org/indicator/6-4-2-level-of-water-stress-freshwater-withdrawal-as-a-proportion-of-available-freshwater-resources/ (accessed on 10 September 2021).
- Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Giorgi, F.; Im, E.-S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed Groundwater Temperature Response to Recent Climate Change. Hydrol. Earth Syst. Sci. 2014, 18, 4453–4466. [Google Scholar] [CrossRef]
- Lasagna, M.; Ducci, D.; Sellerino, M.; Mancini, S.; De Luca, D.A. Meteorological Variability and Groundwater Quality: Examples in Different Hydrogeological Settings. Water 2020, 12, 1297. [Google Scholar] [CrossRef]
- Dragoni, W.; Sukhija, B.S. Climate Change and Groundwater: A Short Review. Geol. Soc. Lond. Spec. Publ. 2008, 288, 1–12. [Google Scholar] [CrossRef]
- Pollack, H.N.; Huang, S.; Shen, P.-Y. Climate Change Record in Subsurface Temperatures: A Global Perspective. Science 1998, 282, 279–281. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Bovolo, C.I.; Parkin, G.; Sophocleous, M. Groundwater Resources, Climate and Vulnerability. Environ. Res. Lett. 2009, 4, 035001. [Google Scholar] [CrossRef]
- Holman, I.P. Climate Change Impacts on Groundwater Recharge- Uncertainty, Shortcomings, and the Way Forward? Hydrogeol. J. 2006, 14, 637–647. [Google Scholar] [CrossRef]
- Döll, P.; Flörke, M. Frankfurt Hydrology Paper 3-Global-Scale Estimation of Diffuse Groundwater Recharge; Frankfurt University: Frankfurt, Germany, 2005; p. 26. [Google Scholar]
- Gunawardhana, L.N.; Kazama, S. Climate Change Impacts on Groundwater Temperature Change in the Sendai Plain, Japan. Hydrol. Process. 2011, 25, 2665–2678. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Caissie, D.; McKenzie, J.M. Shallow Groundwater Thermal Sensitivity to Climate Change and Land Cover Disturbances: Derivation of Analytical Expressions and Implications for Stream Temperature Modeling. Hydrol. Earth Syst. Sci. 2015, 19, 2469–2489. [Google Scholar] [CrossRef] [Green Version]
- Benz, S.A.; Bayer, P.; Winkler, G.; Blum, P. Recent Trends of Groundwater Temperatures in Austria. Hydrol. Earth Syst. Sci. 2018, 22, 3143–3154. [Google Scholar] [CrossRef]
- Hemmerle, H.; Bayer, P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020, 8, 575894. [Google Scholar] [CrossRef]
- Wang, S.-J.; Lee, C.-H.; Yeh, C.-F.; Choo, Y.F.; Tseng, H.-W. Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan. Water 2021, 13, 1153. [Google Scholar] [CrossRef]
- World Meteor Organization. The Global Climate in 2015–2019; World Meteor Organization: Mechelen, Belgium, 2019. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the Surface of Global Change: Impacts of Climate Change on Groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Kovács, A.; Jakab, A. Modelling the Impacts of Climate Change on Shallow Groundwater Conditions in Hungary. Water 2021, 13, 668. [Google Scholar] [CrossRef]
- Shah, T. Climate Change and Groundwater: India’s Opportunities for Mitigation and Adaptation. Environ. Res. Lett. 2009, 4, 035005. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate Change and Water Resources in Britain. Clim. Chang. 1998, 39, 83–110. [Google Scholar] [CrossRef]
- Alley, W.M. Ground Water and Climate. Ground Water 2001, 39, 161. [Google Scholar] [CrossRef]
- Bucci, A.; Lasagna, M.; De Luca, D.A.; Acquaotta, F.; Barbero, D.; Fratianni, S. Time Series Analysis of Underground Temperature and Evaluation of Thermal Properties in a Test Site of the Po Plain (NW Italy). Environ. Earth Sci. 2020, 79, 185. [Google Scholar] [CrossRef]
- Bucci, A.; Barbero, D.; Lasagna, M.; Forno, M.G.; De Luca, D.A. Shallow Groundwater Temperature in the Turin Area (NW Italy): Vertical Distribution and Anthropogenic Effects. Environ. Earth Sci. 2017, 76, 221. [Google Scholar] [CrossRef]
- Taylor, C.A.; Stefan, H.G. Shallow Groundwater Temperature Response to Climate Change and Urbanization. J. Hydrol. 2009, 375, 601–612. [Google Scholar] [CrossRef]
- Colombani, N.; Giambastiani, B.M.S.; Mastrocicco, M. Use of Shallow Groundwater Temperature Profiles to Infer Climate and Land Use Change: Interpretation and Measurement Challenges. Hydrol. Process. 2016, 30, 2512–2524. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N. Groundwater Temperature Trend as a Proxy for Climate Variability. Proceedings 2018, 2, 630. [Google Scholar] [CrossRef]
- Bastiancich, L.; Lasagna, M.; Mancini, S.; Falco, M.; De Luca, D.A. Temperature and Discharge Variations in Natural Mineral Water Springs Due to Climate Variability: A Case Study in the Piedmont Alps (NW Italy). Environ. Geochem. Health 2021, 44, 1971–1994. [Google Scholar] [CrossRef]
- Acque per il consumo umano—Arpa Piemonte. Available online: http://www.arpa.piemonte.it/approfondimenti/temi-ambientali/acqua/acque-potabili (accessed on 8 July 2021).
- Brussolo, E.; Palazzi, E.; von Hardenberg, J.; Masetti, G.; Vivaldo, G.; Previati, M.; Canone, D.; Gisolo, D.; Bevilacqua, I.; Provenzale, A.; et al. Aquifer Recharge in the Piedmont Alpine Zone: Historical Trends and Future Scenarios. Hydrol. Earth Syst. Sci. 2022, 26, 407–427. [Google Scholar] [CrossRef]
- De Luca, D.A.; Lasagna, M.; Debernardi, L. Hydrogeology of the Western Po Plain (Piedmont, NW Italy). J. Maps 2020, 16, 265–273. [Google Scholar] [CrossRef]
- Il Piemonte nel Cambiamento Climatico—Arpa Piemonte. Available online: http://www.arpa.piemonte.it/pubblicazioni-2/pubblicazioni-anno-2007/il-piemonte-nel-cambiamento-climatico (accessed on 7 July 2021).
- Forno, M.G.; De Luca, D.A.; Festa, V.; Bonasera, M.; Bucci, A.; Gianotti, F.; Lasagna, M.; Longhitano, S.G.; Lucchesi, S.; Petruzzelli, M.; et al. Synthesis on the Turin Subsoil Stratigraphy and Hydrogeology (NW Italy). AMQ 2018, 31, 147–170. [Google Scholar] [CrossRef]
- Debernardi, L.; De Luca, D.A.; Lasagna, M. Correlation between Nitrate Concentration in Groundwater and Parameters Affecting Aquifer Intrinsic Vulnerability. Environ. Geol. 2008, 55, 539–558. [Google Scholar] [CrossRef]
- Castagna, S.E.D.; De Luca, D.A.; Lasagna, M. Eutrophication of Piedmont Quarry Lakes (North-Western Italy): Hydrogeological Factors, Evaluation of Trophic Levels and Management Strategies. J. Environ. Assess. Policy Manag. 2015, 17, 1550036. [Google Scholar] [CrossRef]
- Barbero, D.; De Luca, D.A.; Forno, M.G.; Lasagna, M. Preliminary Results on Temperature Distribution in the Quaternary Fluvial and Outwash Deposits of the Piedmont Po Plain (NW Italy): A Statistical Approach. Rend. Online Soc. Geol. It. 2016, 41, 272–275. [Google Scholar] [CrossRef]
- Irace, A.; Clemente, P.; Natalicchio, M.; Ossella, L.; Trenkwalder, S.; De Luca, D.A.; Mosca, P.; Piana, F.; Polino, R.; Violanti, D. Geologia e Idrostratigrafia Profonda Della Pianura Padana Occidentale (Regione Piemonte); La NuovaLito: Firenze, Italy, 2009. [Google Scholar]
- Barbero, D.; Bucci, A.; Forno, M.G.; Lasagna, M.; De Luca, D.A. Thermal Model of the Piedmont Po Plain Shallow Aquifer (NW Italy) with the Statistical Temperature Distribution. Geothermics 2020, 87, 101833. [Google Scholar] [CrossRef]
- Arpa Piemonte Arpa Piemonte—Home Page. Available online: http://rsaonline.arpa.piemonte.it/meteoclima50/clima_ed_indicatori.htm (accessed on 7 July 2021).
- Lasagna, M.; De Luca, D.A. The Use of Multilevel Sampling Techniques for Determining Shallow Aquifer Nitrate Profiles. Environ. Sci. Pollut. Res 2016, 23, 20431–20448. [Google Scholar] [CrossRef]
- Bucci, A.; Barbero, D.; Lasagna, M.; Forno, M.G.; De Luca, D.A. Urban Groundwater Warming in Turin Area (NW Italy). Rend. Online Soc. Geol. It. 2019, 47, 2–6. [Google Scholar] [CrossRef]
- GREASE. Available online: http://www.regione.piemonte.it/monitgis/jsp/cartografia/mappa.do;jsessionid=497GgHpLyjP9vxGXGhWvwZGVWJfTh1MKWCrTvpVk8l2pnQDjjq19!-1934697681!-449251782 (accessed on 14 June 2021).
- Accesso Ai Dati “Annali Meteorologici Ed Idrologici ” Banca Dati Meteorologica. Available online: https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html (accessed on 14 June 2021).
- Braca, G.; Bussettini, M.; Lastoria, B.; Mariani, S. Linee Guida per l’analisi e l’elaborazione Statistica Di Base Delle Serie Storiche Di Dati Idrologici; ISPRA, Manuali e Linee GuidaL: Ispra, Itlay, 2013; ISBN 978-88-448-0584-5. [Google Scholar]
- Voronoï, G. Nouvelles Applications Des Paramètres Continus à La Théorie Des Formes Quadratiques. Premier Mémoire. Sur Quelques Propriétés Des Formes Quadratiques Positives Parfaites. J. Reine Angew. Math. 1908, 1908, 97–178. [Google Scholar] [CrossRef]
- Voronoï, G. Nouvelles Applications Des Paramètres Continus à La Théorie Des Formes Quadratiques. Deuxième Mémoire. Recherches Sur Les Parallélloèdres Primitifs. J. Reine Angew. Math. 1908, 1908, 198–287. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin & Co., Ltd.: London, UK, 1955; p. 202. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 39, 1379–1389. [Google Scholar] [CrossRef]
- Singh, A.; Maichle, R.; Singh, A.K.; Lee, S.E.; Armbya, N. PROUCL Version 4.00. 02 User Guide 2007; United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Lasagna, M.; Mancini, S.; De Luca, D.A. Groundwater Hydrodynamic Behaviours Based on Water Table Levels to Identify Natural and Anthropic Controlling Factors in the Piedmont Plain (Italy). Sci. Total Environ. 2020, 716, 137051. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Rai, A.; Khanna, M.; Sahoo, R.N. Time Series Analysis of Groundwater Levels and Projection of Future Trend. J. Geol. Soc. India 2015, 85, 232–242. [Google Scholar] [CrossRef]
- Mancini, S.; Egidio, E.; Luca, D.A.D.; Lasagna, M. Application and Comparison of Different Statistical Methods for the Analysis of Groundwater Levels over Time: Response to Rainfall and Resource Evolution in the Piedmont Plain (NW Italy). Sci. Total Environ. 2022, 846, 157479. [Google Scholar] [CrossRef]
- Baroni, C.; Bondesan, A.; Carturan, L.; Chiarle, M. Annual Glaciological Survey Of Italian Glaciers (2020); Italian Glaciological Committee: Torino, Italy, 2020. [Google Scholar]
- Egidio, E.; Lasagna, M.; Mancini, S.; Luca, D.A.D. Climate Impact Assessment to the Groundwater Levels Based on Long Time-Series Analysis in a Paddy Field Area (Piedmont Region, NW Italy): Preliminary Results. Acque Sotter. Ital. J. Groundw. Sotter. 2022, 9. [Google Scholar] [CrossRef]
- Lasagna, M.; Caviglia, C.; De Luca, D.A. Simulation Modelling for Groundwater Safety in an Overexploitation Situation: The Maggiore Valley Context (Piedmont, Italy). Bull. Eng. Geol. Environ. 2014, 73, 341–355. [Google Scholar] [CrossRef]
- Avataneo, C.; Belluso, E.; Capella, S.; Cocca, D.; Lasagna, M.; Pigozzi, G.; De Luca, D.A. Groundwater Asbestos Pollution from Naturally Occurring Asbestos (NOA): A Preliminary Study on the Lanzo Valleys and Balangero Plain Area, NW Italy. Ital. J. Eng. Geol. Environ. 2021, 1, 5–19. [Google Scholar] [CrossRef]
- Lasagna, M.; Franchino, E.; De Luca, D.A. Areal and Vertical Distribution of Nitrate Concentration in Piedmont Plain Aquifers (North-Western Italy). In Engineering Geology for Society and Territory; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.-C., Grant, G.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 3, pp. 389–392. ISBN 978-3-319-09053-5. [Google Scholar]
Well—Location | Observation Period | Mean GWT (°C) | Absolute Maximum GWT (°C) | Absolute Minimum GWT (°C) | Standard Error |
---|---|---|---|---|---|
DEPAT—Asti | 2010–2019 | 15.4 | 16.9 | 13.9 | 0.08 |
PII18—Massazza | 2010–2019 | 15.7 | 17.0 | 13.9 | 0.06 |
PII24—Cossato | 2010–2019 | 13.1 | 14.1 | 12.1 | 0.05 |
PII19—Landiona | 2010–2019 | 14.8 | 19.0 | 10.5 | 0.21 |
PII28—Momo | 2010–2019 | 14.3 | 18.0 | 12.3 | 0.09 |
PII31—Caltignaga | 2010–2019 | 15.6 | 20.0 | 12.0 | 0.21 |
PII32—Cameri | 2010–2019 | 16.5 | 18.0 | 14.9 | 0.08 |
PII33—San Pietro Mosezzo | 2010–2019 | 14.1 | 15.0 | 13.7 | 0.03 |
PII34—Biandrate | 2010–2019 | 14.4 | 18.8 | 9.3 | 0.23 |
PII40—Cerano | 2010–2019 | 16.2 | 19.0 | 13.7 | 0.08 |
PII51—Suno | 2010–2019 | 13.2 | 16.0 | 11.0 | 0.12 |
P4—Fossano | 2010–2019 | 13.7 | 17.3 | 9.4 | 0.22 |
P8—Barge | 2010–2019 | 13.2 | 14.5 | 12.4 | 0.04 |
P11—Bra | 2010–2019 | 15.6 | 16.3 | 15.0 | 0.03 |
P13—Racconigi | 2010–2019 | 13.9 | 16.0 | 12.8 | 0.07 |
P14/1—Moretta | 2010–2019 | 14.1 | 15.0 | 13.6 | 0.02 |
P23—Fossano | 2010–2019 | 13.5 | 14.0 | 13.0 | 0.02 |
T2—Morozzo | 2010–2019 | 12.6 | 15.2 | 9.2 | 0.13 |
T6—Bene Vagienna | 2010–2019 | 15.1 | 16.3 | 11.8 | 0.06 |
DST—Masio | 2010–2019 | 13.2 | 15.0 | 9.2 | 0.04 |
PII49—Frassineto Po | 2010–2019 | 17.3 | 19.2 | 15.6 | 0.08 |
PII50—Valmacca | 2013–2019 | 13.9 | 14.2 | 13.5 | 0.02 |
T12—Castelnuovo Scrivia | 2010–2019 | 13.8 | 14.6 | 13.2 | 0.03 |
T23—Alessandria | 2010–2019 | 14.1 | 15.2 | 12.8 | 0.04 |
T24—Alessandria | 2010–2019 | 13.7 | 16.6 | 10.8 | 0.14 |
PII06—Ronsecco | 2010–2019 | 14.6 | 18.9 | 13.2 | 0.07 |
PII7—Lignana | 2013–2019 | 14.0 | 15.2 | 10.7 | 0.09 |
PII08—Bianzè | 2010–2019 | 13.7 | 14.4 | 12.8 | 0.04 |
PII10—Salasco | 2010–2019 | 14.4 | 15.0 | 14.0 | 0.03 |
PII11—Vercelli | 2010–2019 | 16.0 | 18.0 | 12.8 | 0.08 |
PII15—Carisio | 2010–2019 | 14.5 | 17.0 | 12.7 | 0.11 |
PII25—Rovasenda | 2013–2019 | 14.2 | 16.1 | 13.3 | 0.04 |
PII26—Gattinara | 2010–2019 | 13.2 | 22.0 | 12.2 | 0.06 |
PII45—Trino | 2010–2019 | 16.0 | 17.3 | 13.4 | 0.05 |
P17—Scalenghe | 2013–2019 | 13.3 | 14.0 | 12.9 | 0.03 |
P21—Rivarolo Canavese | 2010–2019 | 13.2 | 15.0 | 11.4 | 0.09 |
P43—Albiano d’Ivrea | 2010–2019 | 13.3 | 14.0 | 12.5 | 0.04 |
PZ-SL1—Lanzo Torinese | 2010–2019 | 12.3 | 15.4 | 6.8 | 0.17 |
PZ-SL2—Villanova Canavese | 2013–2019 | 13.0 | 17.0 | 8.4 | 0.25 |
PZ-SL4—S. Maurizio Canavese | 2013–2019 | 14.1 | 17.0 | 10.3 | 0.18 |
SI5—Verolengo | 2010–2019 | 14.1 | 15.7 | 13.6 | 0.02 |
Weather Station | Location | Monthly Mean AT (°C) | Monthly Mean Absolute Maximum AT (°C) | Monthly Mean Absolute Minimum AT (°C) | Standard Error |
---|---|---|---|---|---|
W1 | Forno Alpi Graie | 7.7 | 12.4 | 4.0 | 0.60 |
W2 | Lanzo | 11.7 | 17.6 | 7.0 | 0.79 |
W3 | Cumiana | 13.4 | 19.6 | 8.0 | 0.86 |
W4 | Venaria | 12.7 | 18.9 | 7.4 | 0.92 |
W5 | Bauducchi | 12.9 | 19.5 | 7.3 | 0.70 |
W6 | Santena | 12.6 | 19.0 | 7.1 | 0.70 |
W7 | Brandizzo | 13.0 | 18.8 | 7.9 | 0.68 |
W8 | Barge | 10.4 | 13.3 | 7.7 | 0.65 |
W9 | Dronero | 11.8 | 16.8 | 7.5 | 0.70 |
W10 | Morozzo | 12.1 | 18.0 | 7.0 | 0.72 |
W11 | Bra | 13.5 | 20.1 | 8.7 | 0.74 |
W12 | Biella | 14.0 | 18.7 | 10.2 | 0.71 |
W13 | Massazza | 12.7 | 18.7 | 7.4 | 0.80 |
W14 | Albano Vercellese | 12.6 | 19.4 | 7.2 | 0.88 |
W15 | Tricerro | 13.4 | 19.0 | 8.6 | 0.76 |
W16 | Borgomanero | 12.7 | 19.0 | 7.5 | 0.74 |
W17 | Cerano | 13.9 | 19.3 | 8.9 | 0.76 |
W18 | Alessandria Lobbi | 13.3 | 19.5 | 7.9 | 0.77 |
W19 | Casale Monferrato | 13.9 | 19.2 | 9.4 | 0.88 |
W20 | Asti Tanaro | 13.1 | 19.0 | 8.0 | 0.77 |
Weather Station | Theil-Sen Trend Line Slope— AT Mean (2010–2019) (°C/Month) | Theil-Sen Trend Line Slope— AT Mean (2013–2019) (°C/Month) | Total AT Mean Increase over the Observed Period (°C in 10 Years) | Total AT Mean Increase over the Observed Period (°C in 7 Years) |
---|---|---|---|---|
W2 | 0.014 | 0.017 | 1.716 | 1.462 |
W3 | 0.017 | 1.428 | ||
W4 | 0.022 | 1.882 | ||
W7 | 0.017 | 2.088 | ||
W8 | 0.018 | 2.172 | ||
W10 | 0.017 | 2.064 | ||
W11 | 0.015 | 1.848 | ||
W12 | 0.016 | 1.908 | ||
W13 | 0.015 | 1.788 | ||
W14 | 0.017 | 0.021 | 2.041 | 1.739 |
W15 | 0.018 | 0.021 | 2.124 | 1.697 |
W16 | 0.015 | 1.812 | ||
W17 | 0.016 | 1.884 | ||
W18 | 0.0171 | 2.052 | ||
W19 | 0.017 | 0.021 | 2.076 | 1.697 |
W20 | 0.016 | 1.932 |
Well | Theil-Sen Trend Line Slope—GWT Mean (°C/Month) | Theil-Sen Trend Line Slope—GWT Max (°C/Month) | Theil-Sen Trend Line Slope—GWT Min (°C/Month) | Total GWT Mean Increase over the Observed Period (°C) | Total GWT Max Increase over the Observed Period (°C) | Total GWT Min Increase over the Observed Period (°C) |
---|---|---|---|---|---|---|
DEPAT | 0.008 | 0.009 | 0.008 | 1.008 | 1.068 | 0.960 |
PII18 | 0.008 | 0.007 | 0.008 | 0.948 | 0.828 | 0.996 |
PII24 | 0.006 | 0.005 | 0.006 | 0.672 | 0.576 | 0.684 |
PII19 | 0.015 | 0.013 | 0.017 | 1.812 | 1.572 | 2.004 |
PII28 | 0.006 | 0.006 | 0.004 | 0.696 | 0.672 | 0.516 |
PII31 | 0.016 | 0.015 | 0.015 | 1.908 | 1.800 | 1.824 |
PII32 | 0.010 | 0.010 | 0.010 | 1.176 | 1.248 | 1.164 |
PII33 | 0.008 | 0.008 | 0.008 | 0.984 | 0.996 | 0.996 |
PII34 | −0.002 | 0.000 | −0.007 | −0.180 | 0.000 | −0.804 |
PII40 | 0.008 | 0.007 | 0.009 | 0.960 | 0.780 | 1.020 |
PII51 | 0.011 | 0.010 | 0.010 | 1.308 | 1.248 | 1.200 |
P4 | 0.011 | 0.008 | 0.013 | 1.296 | 0.996 | 1.500 |
P8 | 0.004 | 0.004 | 0.003 | 0.420 | 0.480 | 0.396 |
P11 | 0.004 | 0.003 | 0.003 | 0.420 | 0.336 | 0.396 |
P13 | 0.007 | 0.009 | 0.006 | 0.888 | 1.092 | 0.756 |
P14/1 | 0.004 | 0.004 | 0.004 | 0.456 | 0.444 | 0.432 |
P23 | 0.004 | 0.004 | 0.003 | 0.432 | 0.432 | 0.396 |
T2 | 0.008 | 0.004 | 0.012 | 0.960 | 0.468 | 1.440 |
T6 | 0.006 | 0.005 | 0.007 | 0.756 | 0.648 | 0.816 |
DST | 0.006 | 0.005 | 0.007 | 0.732 | 0.648 | 0.792 |
PII49 | 0.017 | 0.016 | 0.018 | 2.088 | 1.932 | 2.112 |
PII50 | 0.003 | 0.003 | 0.004 | 0.269 | 0.218 | 0.311 |
T12 | 0.004 | 0.004 | 0.004 | 0.504 | 0.480 | 0.516 |
T23 | 0.004 | 0.005 | 0.006 | 0.528 | 0.588 | 0.708 |
T24 | 0.010 | 0.008 | 0.010 | 1.152 | 0.996 | 1.152 |
PII06 | 0.005 | 0.004 | 0.005 | 0.648 | 0.516 | 0.600 |
PII7 | 0.008 | 0.003 | 0.006 | 0.664 | 0.277 | 0.521 |
PII08 | 0.003 | 0.001 | 0.003 | 0.312 | 0.168 | 0.408 |
PII10 | 0.000 | 0.000 | 0.000 | 0.024 | 0.000 | 0.000 |
PII11 | 0.006 | 0.000 | 0.010 | 0.708 | 0.000 | 1.176 |
PII15 | 0.005 | 0.005 | 0.005 | 0.636 | 0.624 | 0.612 |
PII25 | 0.005 | 0.007 | 0.002 | 0.378 | 0.571 | 0.176 |
PII26 | 0.001 | 0.000 | 0.000 | 0.156 | 0.036 | 0.036 |
PII45 | −0.003 | −0.004 | −0.001 | −0.336 | −0.504 | −0.156 |
P17 | 0.004 | 0.004 | 0.003 | 0.294 | 0.328 | 0.277 |
P21 | 0.007 | 0.006 | 0.008 | 0.864 | 0.768 | 0.936 |
P43 | 0.003 | 0.002 | 0.003 | 0.384 | 0.288 | 0.348 |
PZ-SL1 | 0.010 | 0.009 | 0.011 | 1.212 | 1.044 | 1.368 |
PZ-SL2 | 0.008 | 0.008 | 0.010 | 0.680 | 0.680 | 0.848 |
PZ-SL4 | −0.005 | −0.004 | −0.006 | −0.386 | −0.311 | −0.521 |
SI5 | 0.000 | 0.000 | 0.000 | −0.024 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egidio, E.; Mancini, S.; De Luca, D.A.; Lasagna, M. The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy). Water 2022, 14, 2797. https://doi.org/10.3390/w14182797
Egidio E, Mancini S, De Luca DA, Lasagna M. The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy). Water. 2022; 14(18):2797. https://doi.org/10.3390/w14182797
Chicago/Turabian StyleEgidio, Elena, Susanna Mancini, Domenico Antonio De Luca, and Manuela Lasagna. 2022. "The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy)" Water 14, no. 18: 2797. https://doi.org/10.3390/w14182797