The Effect of Urban Agriculture on Water Security: A Spatial Approach
Abstract
:1. Introduction
2. Literature Review
3. Method
3.1. Study Area
3.2. Water Supply Internalization Indicator
3.3. Variables and Data
3.4. Spatial Analysis Model
4. Results
4.1. Global Moran’s I
4.2. Model Estimation
4.3. Robustness of Results
5. Discussion
5.1. Agricultural Development and AWS
5.2. Urbanization and AWS
5.3. Climate Factors
5.4. Policy Suggestions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Sustainable water management in agriculture under climate change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Falkenmark, M. Eco-conflicts-the water cycle perspective. Environ. Confl. Proj. Occas. Rep. 1995, 14, 31–47. [Google Scholar]
- Siciliano, G. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy 2012, 29, 165–178. [Google Scholar] [CrossRef]
- Auci, S.; Vignani, D. Irrigation water intensity and climate variability: An agricultural crops analysis of Italian regions. Environ. Sci. Pollut. Res. 2021, 28, 63794–63814. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecol. Indic. 2014, 47, 43–49. [Google Scholar] [CrossRef]
- Gebre, T.; Gebremedhin, B. The mutual benefits of promoting rural-urban interdependence through linked ecosystem services. Glob. Ecol. Conserv. 2019, 20, e00707. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Meng, C.; Wang, X.; Li, Y. An optimization model for water management based on water resources and environmental carrying capacities: A case study of the Yinma River Basin, Northeast China. Water 2018, 10, 565. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Sec. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Jia, Z.; Cai, Y.; Chen, Y.; Zeng, W. Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resour. Conserv. Recycl. 2018, 134, 282–293. [Google Scholar] [CrossRef]
- Falkenmark, M.; Berntell, A.; Jägerskog, A.; Lundqvist, J.; Matz, M.; Tropp, H. On the Verge of a New Water Scarcity: A Call for Good Governance and Hyman Ingenuity; Stockholm International Water Institute (SIWI): Stockholm, Sweden, 2007; pp. 1–19. [Google Scholar]
- Falkenmark, M.; Molden, D. Wake up to realities of river basin closure. Int. J. Water Resour. Dev. 2008, 24, 201–215. [Google Scholar] [CrossRef]
- Renouf, M.A.; Serrao-Neumann, S.; Kenway, S.J.; Morgan, E.A.; Choy, D.L. Urban water metabolism indicators derived from a water mass balance–bridging the gap between visions and performance assessment of urban water resource management. Water Res. 2017, 122, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Billings, S.B.; Johnson, E.B. Agglomeration within an urban area. J. Urban. Econ. 2016, 91, 13–25. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, R.; Wang, M.; Xue, W.; He, L. The impact of urbanization on urban agriculture: Evidence from China. J. Clean. Prod. 2020, 276, 122686. [Google Scholar] [CrossRef]
- Wang, F.; Yu, C.; Xiong, L.; Chang, Y. How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar] [CrossRef]
- Mu, L.; Fang, L.; Dou, W.; Wang, C.; Qu, X.; Yu, Y. Urbanization-induced spatio-temporal variation of water resources utilization in northwestern China: A spatial panel model based approach. Ecol. Indic. 2021, 125, 107457. [Google Scholar] [CrossRef]
- Dethier, J.-J.; Eenberger, A. Agriculture and development: A brief review of the literature. Econ. Syst. 2012, 36, 175–205. [Google Scholar] [CrossRef]
- Li, J.; Fei, L.; Li, S.; Xue, C.; Shi, Z.; Hinkelmann, R. Development of “water-suitable” agriculture based on a statistical analysis of factors affecting irrigation water demand. Sci. Total Environ. 2020, 744, 140986. [Google Scholar] [CrossRef]
- Galioto, F.; Chatzinikolaou, P.; Raggi, M.; Viaggi, D. The value of information for the management of water resources in agriculture: Assessing the economic viability of new methods to schedule irrigation. Agric. Water Manag. 2020, 227, 105848. [Google Scholar] [CrossRef]
- Song, M.; Wang, R.; Zeng, X. Water resources utilization efficiency and influence factors under environmental restrictions. J. Clean. Prod. 2018, 184, 611–621. [Google Scholar] [CrossRef]
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Kendy, E.; Wang, J.; Molden, D.J.; Zheng, C.; Liu, C.; Steenhuis, T.S. Can urbanization solve inter-sector water conflicts? Insight from a case study in Hebei Province, North China Plain. Water Policy 2007, 9, 75–93. [Google Scholar] [CrossRef]
- Mohan, G.; Chapagain, S.K.; Fukushi, K.; Papong, S.; Sudarma, I.M.; Rimba, A.B.; Osawa, T. An extended input–output framework for evaluating industrial sectors and provincial-level water consumption in Indonesia. Water Resour. Ind. 2021, 25, 100141. [Google Scholar] [CrossRef]
- Antoci, A.; Borghesi, S.; Sodini, M. Water resource use and competition in an evolutionary model. Water Resour. Manag. 2017, 31, 2523–2543. [Google Scholar] [CrossRef]
- Falkenmark, M. The massive water scarcity now threatening Africa: Why isn’t it being addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul. Bull. 1992, 47, 1–36. [Google Scholar]
- Tang, H. Comparative analysis of wheat production capacity in major production areas. J. Henan Agric. Sci. 2008, 6, 4. (In Chinese) [Google Scholar]
- Govere, S.; Nyamangara, J.; Nyakatawa, E.Z. Climate change signals in the historical water footprint of wheat production in Zimbabwe. Sci. Total Environ. 2020, 742, 140473. [Google Scholar] [CrossRef]
- He, L.; Du, Y.; Wu, S.; Zhang, Z. Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure. Agric. Water Manag. 2021, 243, 106456. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earth Scan Press: London, UK, 2011. [Google Scholar]
- Chen, Z.; Song, S. Efficiency and technology gap in China’s agriculture: A regional meta-frontier analysis. China Econ. Rev. 2008, 19, 287–296. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Petrescu, D.C.; Reti, K.-O. My land is my food: Exploring social function of large land deals using food security–land deals relation in five Eastern European countries. Land Use Policy 2019, 82, 729–741. [Google Scholar] [CrossRef]
- Paelinck, J.H.P.; Klaassen, L.H. Spatial Econometrics; Saxon House: Farnborough, UK, 1979. [Google Scholar]
- Deng, X.J.; Xu, Y.P.; Han, L.F.; Yang, M.N.; Yang, L.; Song, S.; Li, G.; Wang, Y.F. Spatial-temporal evolution of the distribution pattern of river systems in the plain river network region of the Taihu Basin, China. Quat. Int. 2016, 392, 178–186. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Cheng, Y.Q.; Ye, X.Y.; Wei, Y.H.D. Analyzing the space-time dynamics of innovation in China: ESDA and spatial panel approaches. Growth Chang. 2016, 47, 111–129. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Panel Data Analysis. Encycl. GIS 2017, 2, 2050–2058. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009; pp. 113–145. [Google Scholar]
- Lee, L.F. Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models. Econom. Theory 2002, 18, 252–277. [Google Scholar] [CrossRef]
- Global Water Partnership (GWP). Integrated Water Resources Management. TAC Background Paper 4. Glob. Water Partnersh. Stockh. 2000. Available online: https://www.gwp.org/globalassets/global/toolbox/publications/background-papers/04-integrated-water-resources-management-2000-english.pdf (accessed on 1 August 2022).
Name and Abbreviation | Definition | Mean | Standard Deviation | Max | Min |
---|---|---|---|---|---|
Agricultural water (AW) | Amount of water supplied to the agricultural industry within a city boundary (100 million m3) | 10.759 | 6.149 | 29.21 | 1.000 |
Urban water (UW) | Amount of urban and industrial water supply among the total water supply in the boundary (100 million m3) | 5.031 | 4.439 | 32.7 | 0.131 |
water resource (WR) | Amount of nature water within the city boundary (100 million m3) | 15.538 | 11.126 | 86.76 | 0.71 |
Urban water supply internalization (UWS) | Ratio of urban water supply against local nature water supply (m3/m3) | 0.452 | 0.442 | 5.104 | 0.009 |
Agricultural water supply internalization (AWS) | Ratio of agricultural water supply against local nature water supply (m3/m3) | 1.070 | 1.259 | 11.944 | 0.058 |
Variable Abbreviation | Variable Name and Definition | Mean | Standard Deviation | Max | Min |
---|---|---|---|---|---|
agr1 | Agricultural population (10,000 person) | 369.939 | 199.802 | 940.028 | 53.491 |
agr2 | Agricultural GDP (100 million yuan) | 4.938 | 0.037 | 598.98 | 1.589 |
agr3 | Agricultural machine power (10,000 kilowatts) | 9019.674 | 128,920.9 | 2,000,000 | 68.891 |
agr4 | Vegetable planting areas (1000 hectares) | 438,778.149 | 5,251,670 | 278,637 | 16,172 |
agr5 | Traditional plant planting areas (1000 hectares) | 172,560.534 | 5,298,969 | 1,300,000 | 39,512.3 |
C1 | Climate factor Temperature (°C) | 12.714 | 1.243 | 14.821 | 8.069 |
C2 | Climate factor Precipitation (100 million m3) | 69.445 | 39.536 | 236.3 | 10.1 |
L | Water accessibility (4 levels) | 2 | 1.001 | 4 | 1 |
Variables | SAR | SEM | SDM | |||
---|---|---|---|---|---|---|
FE | RE | FE | RE | FE | RE | |
Spatial correlation: | ||||||
ln (Agricultural water supply internalization) | 0.243 *** | 0.288 *** | 0.251 *** | 0.275 *** | ||
(0.000) | (0.000) | (0.000) | (0.000) | |||
Ln | 0.287 *** | 0.302 *** | ||||
(0.000) | (0.000) | |||||
ln (Agricultural population) | 0.429 *** | 0.261 ** | ||||
(0.003) | (0.052) | |||||
ln (vegetable areas) | −0.183 * | −0.109 | ||||
(0.059) | (0.267) | |||||
ln (Water accessibility) | 0.649 * | |||||
(0.076) | ||||||
Main variables: | ||||||
ln (Agricultural population) | 0.227 *** | 0.252 *** | 0.227 ** | 0.290 *** | 0.010 | 0.175 * |
(0.003) | (0.001) | (0.012) | (0.001) | (0.927) | (0.057) | |
ln (Agricultural GDP) | −0.029 * | −0.026 | −0.036 * | −0.032 | 0.029 | 0.024 |
(0.105) | (0.163) | (0.105) | (0.154) | (0.366) | (0.468) | |
ln (Agricultural machine power) | 0.002 | 0.006 | 0.006 | −0.002 | 0.006 | 0.008 |
(0.912) | (0.842) | (0.701) | (0.930) | (0.701) | (0.646) | |
ln (Traditional plant areas) | 0.049 | 0.337 *** | 0.187 *** | 0.165 ** | −0.087 | 0.127 ** |
(0.749) | (0.005) | (0.004) | (0.013) | (0.606) | (0.059) | |
ln (Vegetable areas) | 0.181 *** | 0.164 *** | 0.095 | 0.412 *** | 0.146 ** | 0.354 *** |
(0.003) | (0.006) | (0.558) | (0.003) | (0.031) | (0.008) | |
ln (Precipitation) | −1.232 *** | −1.081 *** | −1.483 *** | −1.387 *** | −1.275 *** | −1.125 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
ln (Temperature) | 0.165 | −0.036 | 0.608 | 0.389 | −2.654 *** | −2.411 ** |
(0.660) | (0.921) | (0.211) | (0.430) | (0.000) | (0.017) | |
ln (Water accessibility) | 0.068 | 0.168 | −0.402 | |||
(0.703) | (0.461) | (0.163) | ||||
ln (Urban water supply internalization) | 0.196 *** | 0.223 *** | 0.219 *** | 0.246 *** | 0.205 *** | 0.222 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Constant | −3.169 * | −4.273 | −0.138 | |||
(0.070) | (0.049) | (0.965) | ||||
R2 | 0.821 | 0.817 | 0.814 | 0.812 | 0.833 | 0.828 |
LM test | 209.061 *** | 101.083 *** | ||||
(0.000) | (0.000) |
Direct Effect | Indirect Effect | Total Effect | |
---|---|---|---|
ln (Agricultural population) | 0.201 ** | 0.396 ** | 0.597 *** |
(0.029) | (0.010) | (0.000) | |
ln (Agricultural GDP) | 0.02 | −0.046 | −0.026 |
(0.504) | (0.304) | (0.437) | |
ln (Agricultural machine power) | 0.008 | −0.005 | 0.002 |
(0.656) | (0.932) | (0.970) | |
ln (Traditional plant areas) | 0.349 *** | −0.318 | 0.031 |
(0.006) | (0.259) | (0.918) | |
ln (Vegetable areas) | 0.118 ** | −0.085 | 0.033 |
(0.056) | (0.495) | (0.807) | |
ln (Precipitation) | −1.144 *** | −0.317 *** | −1.461 *** |
(0.000) | (0.040) | (0.000) | |
ln (Temperature) | −2.187 ** | 2.929 *** | 0.742 |
(0.020) | (0.007) | (0.154) | |
ln (Water assess way) | −0.334 | 0.648 * | 0.315 |
(0.217) | (0.095) | (0.314) | |
ln (Urban water supply internalization) | 0.226 *** | 0.084 | 0.31 *** |
(0.000) | (0.151) | (0.000) |
Direct Effect | Indirect Effect | Total Effect | |
---|---|---|---|
ln (Agricultural population) | 0.296 *** | 0.592 * | 0.888 *** |
(0.003) | (0.076) | (0.010) | |
ln (Agricultural GDP) | 0.005 | −0.052 | −0.046 |
(0.845) | (0.480) | (0.458) | |
ln (Agricultural machine power) | 0.002 | 0.165 | 0.179 |
(0.970) | (0.381) | (0.354) | |
ln (Traditional plant areas) | 0.47 *** | −1.595 | −1.125 |
(0.001) | (0.114) | (0.280) | |
ln (Vegetable areas) | 0.039 | −0.068 | −0.03 |
(0.553) | (0.839) | (0.930) | |
ln (Precipitation) | −1.318 *** | 0.212 | −1.106 ** |
(0.000) | (0.651) | (0.024) | |
ln (Temperature) | −1.549 * | 2.199 * | 0.65 |
(0.056) | (0.081) | (0.438) | |
ln (Water assess way) | −0.266 | 0.234 | 1.315 |
(0.301) | (0.259) | (0.437) | |
ln (Urban water supply internalization) | 0.253 *** | 1.58 | 0.487 ** |
(0.000) | (0.382) | (0.023) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Kato, T. The Effect of Urban Agriculture on Water Security: A Spatial Approach. Water 2022, 14, 2529. https://doi.org/10.3390/w14162529
Sun M, Kato T. The Effect of Urban Agriculture on Water Security: A Spatial Approach. Water. 2022; 14(16):2529. https://doi.org/10.3390/w14162529
Chicago/Turabian StyleSun, Menglu, and Takaaki Kato. 2022. "The Effect of Urban Agriculture on Water Security: A Spatial Approach" Water 14, no. 16: 2529. https://doi.org/10.3390/w14162529