# Identifying Flow Eddy Currents in the River System as the Riverbank Scouring Cause: A Case Study of the Mekong River

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Site Selection

^{3}/s (10th largest river in the world) [23]. The discharge varies by season (rainy and dry), and the discharge at TC is approximately four times greater than that at CD [23]. The Mekong River in Vietnam has many riverbank failure cases (including the Vam Nao area) [24], which have caused serious livelihood loss and infrastructure damages.

#### 2.2. Mesh Generation

_{j}is the value of the points to be interpolated; z

_{i}is the value of the points adjacent to z

_{j}; d

_{i}

_{j}the distance between z

_{j}and z

_{j}, and n is the coefficient of the distance weight adjustment.

#### 2.3. Saint–Venant Equations

^{2}); v

_{t}is the diffusive coefficient (m

^{2}/s); Z is the water elevation (m); t is the time (s); S

_{h}is the source (m/s), and S

_{x}, S

_{y}: sources (m/s

^{2}).

#### 2.4. Navier–Stokes Equations

_{x}and F

_{y}are the sources (i.e., Coriolis) and component velocities of $\overrightarrow{U}$ with U (t, x, y, z). The input discharge at Nang Gu and the input water elevation at Binh Thuy were extracted from the outcome of TELEMAC2D, while the input discharge at Vam Nao station was measured data. In this study, we ran TELEMAC3D with the timestep of 4 s to obtain the major outputs of velocity (m/s), water elevation (m), and the eddy currents’ directions by layer.

#### 2.5. Model Assessment

_{sim}

_{,i}is the simulated water elevation, D

_{obs}

_{,i}is the observed water elevation, and i is hour. We expected to obtain the computed NSE (hourly) at 15 days, 3 months, and a year greater than 0.6, which indicates a satisfactory model [32]. The model performance was assessed for water elevation at the Vam Nao station. Because the simplification of TELEMAC3D is TELEMAC2D, the model assessment for TELEMAC2D also represents TELEMAC3D. The eddy currents and depth-averaged velocity vector directions can be directly and mathematically computed from TELEMAC2D and TELEMAC3D. The quality of the eddy currents depends upon the performance of TELEMAC2D and TELEMAC3D. This study verified the existence of the eddy currents confirmed by two local people who live in the area.

#### 2.6. Equipment and Tools

## 3. Results

#### 3.1. Model Calibration and Assessment

#### 3.2. Eddy Currents

#### 3.3. Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Das, T.K.; Haldar, S.K.; DAS Gupta, I.; Sen, S. River Bank Erosion Induced Human Displacement and Its Consequences. Living Rev. Landsc. Res.
**2014**, 8, 1–35. [Google Scholar] [CrossRef] - Izumi, N.; Parker, G. Linear stability analysis of channel inception: Downstream-driven theory. J. Fluid Mech.
**2000**, 419, 239–262. [Google Scholar] [CrossRef] - Roth, G.; Siccardi, F.; Rosso, R. Hydrodynamic description of the erosional development of drainage patterns. Water Resour. Res.
**1989**, 25, 319–332. [Google Scholar] [CrossRef] - Cao, Z.; Pender, G.; Wallis, S.G.; Carling, P. Computational Dam-Break Hydraulics over Erodible Sediment Bed. J. Hydraul. Eng.
**2004**, 130, 689–703. [Google Scholar] [CrossRef] - Simpson, G.; Castelltort, S. Coupled model of surface water flow, sediment transport and morphological evolution. Comput. Geosci.
**2006**, 32, 1600–1614. [Google Scholar] [CrossRef] - Alaghmand, S.; Abdullah, R.B.; Abustan, I.; Eslamian, S. Comparison between capabilities of HEC-RAS and MIKE11 hydraulic models in river flood risk modelling (a case study of Sungai Kayu Ara River basin, Malaysia). Int. J. Hydrol. Sci. Technol.
**2012**, 2, 270–291. [Google Scholar] [CrossRef] - Kadam, P.; Sen, D. Flood inundation simulation in Ajoy River using MIKE-FLOOD. ISH J. Hydraul. Eng.
**2012**, 18, 129–141. [Google Scholar] [CrossRef] - Makungo, R.; Odiyo, J.; Ndiritu, J.; Mwaka, B. Rainfall-runoff modelling approach for ungauged catchments: A case study of Nzhelele River sub-quaternary catchment. Phys. Chem. Earth Parts A/B/C
**2010**, 35, 596–607. [Google Scholar] [CrossRef] - Moussoulis, E.; Zacharias, I.; Nikolaidis, N.P. Combined hydrological, rainfall–runoff, hydraulic and sediment transport modeling in Upper Acheloos River catchment. Desalination Water Treat.
**2016**, 57, 11540–11549. [Google Scholar] [CrossRef] - Talchabhadel, R.; Shakya, N.M.; Dahal, V.; Eslamian, S. Rainfall runoff modelling for flood forecasting (a case study on west rapti watershed). J. Flood Eng.
**2015**, 6, 53–61. [Google Scholar] - Lin, B.; Wicks, J.M.; Falconer, R.A.; Adams, K. Integrating 1D and 2D hydrodynamic models for flood simulation. Proc. Inst. Civ. Eng. Water Manag.
**2006**, 159, 19–25. [Google Scholar] [CrossRef] - Baban, S.M.; Foster, I.D. Modelling water flow and quality: An evaluation of the ISIS model in the River Avon, United Kingdom. West Indian J. Eng.
**2002**, 24, 1–15. [Google Scholar] - Gross, E.J.; Moglen, G.E. Estimating the Hydrological Influence of Maryland State Dams Using GIS and the HEC-1 Model. J. Hydrol. Eng.
**2007**, 12, 690–693. [Google Scholar] [CrossRef] - Hydrologic Engineering Center. Introduction and Application of Kinematic Wave Routing Techniques Using HEC-1. US Army Corps of Engineers. Available online: http://www.hec.usace.army.mil/publications/TrainingDocuments/TD-10.pdf (accessed on 30 June 2021).
- Hervouet, J.M. TELEMAC, a hydroinformatic system. Houille Blanche
**1999**, 85, 21–28. [Google Scholar] [CrossRef] - Hervouet, J.M. A high resolution 2-D dam-break model using parallelization. Hydrol. Process.
**2000**, 14, 2211–2230. [Google Scholar] [CrossRef] - Warren, L. Scour at Bridges—What’s it All About? Open File Report 93-W0487; Geological Survey (U.S.): Reston, VA, USA, 1993.
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology. Am. J. Phys.
**1973**, 41, 752–754. [Google Scholar] [CrossRef] - Charles, C.D.; Ify, L.N.; Levi, C.U. Prediction of Eddy current and scour hole positions along river beds. PENCIL Pub. Phys. Sci. Eng.
**2015**, 1, 1–10. [Google Scholar] - Dutta, D.; Alam, J.; Umeda, K.; Hayashi, M.; Hironaka, S. A two-dimensional hydrodynamic model for flood inundation simulation: A case study in the lower Mekong river basin. Hydrol. Process.
**2007**, 21, 1223–1237. [Google Scholar] [CrossRef] - Kuenzer, C.; Campbell, I.; Roch, M.; Leinenkugel, P.; Tuan, V.Q.; Dech, S. Understanding the impact of hydropower developments in the context of upstream–downstream relations in the Mekong river basin. Sustain. Sci.
**2013**, 8, 565–584. [Google Scholar] [CrossRef] - Fujii, H.; Garsdal, H.; Ward, P.; Ishii, M.; Morishita, K.; Boivin, T. Hydrological roles of the Cambodian floodplain of the Mekong River. Int. J. River Basin Manag.
**2003**, 1, 253–266. [Google Scholar] [CrossRef] - Letrung, T.; Li, Q.; Li, Y.; Vukien, T.; Nguyenthai, Q. Morphology Evolution of Cuadai Estuary, Mekong River, Southern Vietnam. J. Hydrol. Eng.
**2013**, 18, 1122–1132. [Google Scholar] [CrossRef] - van Tho, N. Coastal erosion, river bank erosion and landslides in the Mekong Delta: Causes, effects and solutions. In Geotecnics for Sustainable Infrastructure Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 957–962. [Google Scholar]
- Achilleos, G. The Inverse Distance Weighted interpolation method and error propagation mechanism—Creating a DEM from an analogue topographical map. J. Spat. Sci.
**2011**, 56, 283–304. [Google Scholar] [CrossRef] - Bartier, P.M.; Keller, C. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci.
**1996**, 22, 795–799. [Google Scholar] [CrossRef] - Ata, R.; Goeury, C.; Hervouet, J.M. TELEMAC Modeling System 2D Hydrodynamics TELEMAC2D Software-User Manual; EDF R&D: Paris, France, 2014; Available online: http://www.opentelemac.org/downloads/MANUALS/TELEMAC-2D/telemac-2d_user_manual_en_v7p0.pdf (accessed on 21 January 2021).
- Meyer-Peter, E.; Müller, R. Formulas for bed-load transport. In IAHSR 2nd Meeting, Stockholm, Appendix 2; IAHR: Madrid, Spain, 1948. [Google Scholar]
- Horritt, M.; Bates, P. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol.
**2002**, 268, 87–99. [Google Scholar] [CrossRef] - Fernandes, E.H.; Dyer, K.R.; Niencheski, L.F.H. Calibration and validation of the TELEMAC-2D model to the Patos Lagoon (Brazil). J. Coast. Res.
**2001**, 470–488. [Google Scholar] - EDF R &, D. TELEMAC Modeling System: 3D Hydrodynamics TEELMAC3D Software 7.1/Operating Manual; Pham, C.-T., Joly, A., Eds.; EDF R & D: Paris, France, 2016; Available online: http://www.opentelemac.org/downloads/MANUALS/TELEMAC-3D/telemac3d_user_manual_v7p1.pdf (accessed on 20 January 2021).
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE
**2007**, 50, 885–900. [Google Scholar] [CrossRef] - Canadian Hydraulics Centre. Blue Kenue Reference Manual; Canadian Hydraulics Centre, National Research Council: Ottawa, ON, Canada, 2011. [Google Scholar]
- QD Team. QGIS Geographic Information System, Open-Source Geospatial Foundation Project; QD Team: Norwich, UK, 2016. [Google Scholar]
- Chivers, I.D.; Sleightholme, J. Introduction to Programming with FORTRAN; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Lutz, M. Learning Python: Powerful Object-Oriented Programming; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Tri, D.Q.; Hue, L.T. Modeling and forecasting water flow in Vietnam’s Mekong River. In Proceedings of the Scientific Conference on Meteoro-Hydrology and Oceanography, Hanoi, Vietnam, 27 October 2016. [Google Scholar]
- Huy, P.D.A.; Tu, T.T. Assessing variation of riverbank in Vam Nao. Sci. Technol. Dev. J. 2015.
- Dike, C.C.; Nwaogazie, I.L.; Onochie, O. Eddy current propagation: A case study of the Nun River. PENCIL Publ. Phys. Sci. Eng.
**2015**, 1, 11–20. [Google Scholar] - Hubbs, S.A. Changes in Riverbed Hydraulic Conductivity and Specific Capacity at Louisville. Riverbank Filtr. Hydrol.
**2006**, 60, 199–220. [Google Scholar] [CrossRef] - Leifer, I. A Synthesis Review of Emissions and Fates for the Coal Oil Point Marine Hydrocarbon Seep Field and California Marine Seepage. Geofluids
**2019**, 2019, 4724587. [Google Scholar] [CrossRef] - Sharma, H. River dynamics and Hydraulic Structures: River Dynamics for transitional stage rivers with case study of Sharda River near Lakhimpur or variable flow patterns. EasyChair Preprint
**2020**, 1–14. [Google Scholar] - Pavoni, J.L.; Stein, D.E. Environmental Impact of Riverbank Revetment; University of Louisville: Louisville, KY, USA, 1975. [Google Scholar]
- Booth, E. Sediment Response to Construction and Recent Adaptive Management of Glen Canyon Dam, Colorado River, Arizona; American Geophysical Union: Washington, DC, USA, 2017. [Google Scholar]
- Youdeowei, P.O.; Abam, T.K.S. Local engineering practices of erosion control in the coastal areas of the Niger Delta. Environ. Earth Sci.
**1997**, 31, 231–235. [Google Scholar] [CrossRef]

**Figure 2.**Simulated and observed water elevation H over 15 days for the friction of 0.016 (m). Notes: H_obs is the observed and H_sim is the simulated water elevation.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nguyen, T.T.N.; Shih, D.-S.; Chua, L.H.; Kieu, H.N.; Ha, L.H.; Nguyen, L.H.; Luu, N.V.; Huynh, T.V.; Duong, L.M.; Ngo, A.T.; Nguyen, H.V.; Tran, C.N. Identifying Flow Eddy Currents in the River System as the Riverbank Scouring Cause: A Case Study of the Mekong River. *Water* **2022**, *14*, 2418.
https://doi.org/10.3390/w14152418

**AMA Style**

Nguyen TTN, Shih D-S, Chua LH, Kieu HN, Ha LH, Nguyen LH, Luu NV, Huynh TV, Duong LM, Ngo AT, Nguyen HV, Tran CN. Identifying Flow Eddy Currents in the River System as the Riverbank Scouring Cause: A Case Study of the Mekong River. *Water*. 2022; 14(15):2418.
https://doi.org/10.3390/w14152418

**Chicago/Turabian Style**

Nguyen, Tanh T. N., Dong-Sin Shih, Lloyd HC Chua, Huyen N. Kieu, Linh H. Ha, Linh H. Nguyen, Ninh V. Luu, Thai V. Huynh, Linh M. Duong, An T. Ngo, Hoa V. Nguyen, and Chau N. Tran. 2022. "Identifying Flow Eddy Currents in the River System as the Riverbank Scouring Cause: A Case Study of the Mekong River" *Water* 14, no. 15: 2418.
https://doi.org/10.3390/w14152418