Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences
Abstract
:1. Introduction: Drivers of Climate Change and Pollutant Dynamics in Aquatic Ecosystems
2. Metal and Metalloid Dynamics in Aquatic Ecosystems under A Climate Change Scenario
3. Conservation Physiology to Inform Policy on Metal and Metalloid Increased Risk under Climate Change
4. The Decade of the Ocean—Efforts to Mitigate Environmental Pollution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NASA. Available online: https://climate.nasa.gov/resources/global-warming-vs-climate-change/ (accessed on 15 June 2022).
- UN (United Nations). Available online: https://www.un.org/en/climatechange/what-is-climate-change (accessed on 20 June 2022).
- Wu, Q.; Xia, X.; Mou, X.; Zhu, B.; Zhao, P.; Dong, H. Effects of seasonal climatic variability on several toxic contaminants in urban lakes: Implications for the impacts of climate change. J. Environ. Sci. 2014, 26, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Ockenden, M.C.; Deasy, C.E.; Benskin, C.M.H.; Beven, K.J.; Burke, S.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; et al. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total Environ. 2016, 548, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyes, P.D.; Lema, S.C. Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr. Zool. 2015, 61, 669–689. [Google Scholar]
- Alava, J.J.; Cheung, W.W.; Ross, P.S.; Sumaila, U.R. Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Glob. Chang. Biol. 2017, 23, 3984–4001. [Google Scholar] [CrossRef] [PubMed]
- Schiedek, D.; Sundelin, B.; Readman, J.W.; Macdonald, R.W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 2007, 54, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Brandon, E. The Nature and Extent of Site Contamination. Global Approaches to Site Contamination Law, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 11–39. [Google Scholar]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Impact of climate change on salinization of coastal water resources. Water Resour. Manag. 2016, 30, 2483–2496. [Google Scholar] [CrossRef]
- Jarsjö, J.; Andersson-Sköld, Y.; Fröberg, M.; Pietroń, J.; Borgström, R.; Löv, Å.; Kleja, D.B. Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Sci. Total Environ. 2020, 712, 135560. [Google Scholar] [CrossRef]
- Wijngaard, R.R.; Lutz, A.F.; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 2017, 12, e0190224. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, A.; Filipsson, M.; Öberg, T.; Bergbäck, B. Climate change—An uncertainty factor in risk analysis of contaminated land. Sci. Total Environ. 2011, 409, 4693–4700. [Google Scholar] [CrossRef]
- Eckhardt, K.; Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Jyrkama, M.I.; Sykes, J.F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J. Hydrol. 2007, 338, 237–250. [Google Scholar] [CrossRef]
- Barth, J.A.C.; Grathwohl, P.; Fowler, H.J.; Bellin, A.; Gerzabek, M.H.; Lair, G.J.; Barceló, D.; Petrovic, M.; Navarro, A.; Négrel, P.; et al. Mobility, turnover and storage of pollutants in soils, sediments and waters: Achievements and results of the EU project AquaTerra—A review. Sustain. Agric. 2009, 2009, 857–871. [Google Scholar]
- Bonten, L.T.; Kroes, J.G.; Groenendijk, P.; van der Grift, B. Modeling diffusive Cd and Zn contaminant emissions from soils to surface waters. J. Contam. Hydrol. 2012, 138, 113–122. [Google Scholar] [CrossRef]
- Bell, V.A.; Kay, A.L.; Cole, S.J.; Jones, R.G.; Moore, R.J.; Reynard, N.S. How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. J. Hydrol. 2012, 442, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Whitehead, P.G.; Wade, A.J.; Butterfield, D.; Davis, R.J.; Watts, G. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J. Hydrol. 2006, 330, 204–220. [Google Scholar] [CrossRef]
- Crossman, J.; Futter, M.N.; Whitehead, P.G.; Stainsby, E.; Baulch, H.M.; Jin, L.; Oni, S.K.; Wilby, N.L.; Dillon, P.J. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. Hydrol. Earth Syst. Sci. 2014, 18, 5125–5148. [Google Scholar] [CrossRef] [Green Version]
- El-Khoury, A.; Seidou, O.; Lapen, D.R.; Que, Z.; Mohammadian, M.; Sunohara, M.; Bahram, D. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manag. 2015, 151, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.M.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Beklioglu, M.; Ozen, A.; et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 2009, 38, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Kronvang, B.; Olesen, J.E.; Audet, J.; Søndergaard, M.; Hoffmann, C.C.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Larsen, S.E.; et al. Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 2011, 663, 1–21. [Google Scholar] [CrossRef]
- Macleod, C.J.A.; Falloon, R.; Evans, P.M. Haygarth the effects of climate change on the mobilization of diffuse substances from agricultural systems. Adv. Agron. 2012, 115, 41–77. [Google Scholar]
- Rankinen, K.; Gao, G.; Granlund, K.; Grönroos, J.; Vesikko, L. Comparison of impacts of human activities and climate change on water quantity and quality in Finnish agricultural catchments. Landsc. Ecol. 2015, 30, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Szalińska, E.; Zemełka, G.; Kryłów, M.; Orlińska-Woźniak, P.; Jakusik, E.; Wilk, P. Climate change impacts on contaminant loads delivered with sediment yields from different land use types in a Carpathian basin. Sci. Total Environ. 2021, 755, 142898. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Shan, B. Effects of organic matter on polycyclic aromatic hydrocarbons in riverine sediments affected by human activities. Sci. Total Environ. 2022, 815, 152570. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.G.; Chen, S.Y. The relationship between adsorption of heavy metal and organic matter in river sediments. Environ. Int. 1998, 24, 345–352. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of metal/metalloid-polluted soils: A short review. Appl. Sci. 2021, 11, 4134. [Google Scholar] [CrossRef]
- Simon, L. Potentially harmful elements in agricultural soils. In PHEs, Environment and Human Health: Potentially Harmful Elements in the Environment and the Impact on Human Health; Springer: Berlin/Heidelberg, Germany, 2014; pp. 85–150. [Google Scholar]
- Eggleton, J.; Thomas, K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Tessier, E.; Garnier, C.; Mullot, J.U.; Lenoble, V.; Arnaud, M.; Raynaud, M.; Mounier, S. Study of the spatial and historical distribution of sediment inorganic contamination in the Toulon bay (France). Mar. Pollut. Bull. 2011, 62, 2075–2086. [Google Scholar] [CrossRef]
- Frémion, F.; Bordas, F.; Mourier, B.; Lenain, J.F.; Kestens, T.; Courtin-Nomade, A. Influence of dams on sediment continuity: A study case of a natural metallic contamination. Sci. Total Environ. 2016, 547, 282–294. [Google Scholar] [CrossRef]
- De Lacerda, L.D.; Ward, R.D.; Borges, R.; Ferreira, A.C. Mangrove Trace Metal Biogeochemistry Response to Global Climate Change. Front. For. Glob. Chang. 2022, 5, 817992. [Google Scholar] [CrossRef]
- Le Gall, M.; Ayrault, S.; Evrard, O.; Laceby, J.P.; Gateuille, D.; Lefèvre, I.; Mouchel, J.-M.; Meybeck, M. Investigating the metal contamination of sediment transported by the 2016 Seine River flood (Paris, France). Environ. Pollut. 2018, 240, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Equeenuddin, S.M.; Tripathy, S.; Sahoo, P.K.; Panigrahi, M.K. Metal behavior in sediment associated with acid mine drainage stream: Role of pH. J. Geochem. Explor. 2013, 124, 230–237. [Google Scholar] [CrossRef]
- Vasile, G.; Cruceru, L.; Petre, J.; Vasile, I. Complex analytical investigations regarding the bio-availability of heavy metals from sediments. Rev. Chim. 2005, 56, 790–794. [Google Scholar]
- Butcher, J.B.; Nover, D.; Johnson, T.E.; Clark, C.M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Chang. 2015, 129, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Bindoff, N.L.; Cheung, W.W.L.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; O’Donoghue, S.; Williamson, P.; Hilmi, N.; Cuicapusa, S.R.P.; et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Weyer, N.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 447–587. [Google Scholar]
- Nedrich, S.M.; Burton, G.A. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels. Environ. Toxicol. Chem. 2017, 36, 2456–2464. [Google Scholar] [CrossRef]
- Yin, Y.; Impellitteri, C.A.; You, S.J.; Allen, H.E. The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Eklof, K.; Kraus, A.; Futter, M.; Schelker, J.; Meili, M.; Boyer, E.W.; Bishop, K. Parsimonious model for simulating total mercury and methylmercury in boreal streams based on riparian flow paths and seasonality. Environ. Sci. Technol. 2015, 49, 7851–7859. [Google Scholar] [CrossRef]
- Lidman, F.; Boily, Å.; Laudon, H.; Köhler, S.J. From soil water to surface water–how the riparian zone controls element transport from a boreal forest to a stream. Biogeosciences 2017, 14, 3001–3014. [Google Scholar] [CrossRef] [Green Version]
- Iordache, A.M.; Nechita, C.; Voica, C.; Pluháček, T.; Schug, K.A. Climate change extreme and seasonal toxic metal occurrence in Romanian freshwaters in the last two decades—Case study and critical review. NPJ Clean Water 2022, 5, 2. [Google Scholar] [CrossRef]
- Zhang, H.; Huo, S.; Yeager, K.M.; Xi, B.; Zhang, J.; He, Z.; Ma, C.; Wu, F. Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication: Impacts of sources and climate change. Ecol. Indic. 2018, 93, 771–780. [Google Scholar] [CrossRef]
- Ward, R.; Lacerda, L.D. Responses of mangrove ecosystems to sea level change. In Dynamic Sedimentary Environment of Mangrove Coasts, 1st ed.; Friess, D., Sidik, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–253. [Google Scholar]
- Atkinson, C.A.; Jolley, D.F.; Simpson, S.L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alheit, J.; Pohlmann, T.; Casini, M.; Greve, W.; Hinrichs, R.; Mathis, M.; O’Driscoll, K.; Vorberg, R.; Wagner, C. Climate variability drives anchovies and sardines into the North and Baltic Seas. Prog. Oceanogr. 2012, 96, 128–139. [Google Scholar] [CrossRef]
- Bestley, S.; Jonsen, I.D.; Hindell, M.A.; Guinet, C.; Charrassin, J.B. Integrative modelling of animal movement: Incorporating in situ habitat and behavioural information for a migratory marine predator. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaugrand, G.; Kirby, R.R. How do marine pelagic species respond to climate change? Theories and observations. Annu. Rev. Mar. Sci. 2018, 10, 10087499. [Google Scholar] [CrossRef] [PubMed]
- Okunishi, T.; Ito, S.I.; Hashioka, T.; Sakamoto, T.T.; Yoshie, N.; Sumata, H.; Yara, Y.; Okada, N.; Yamanaka, Y. Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific. Clim. Chang. 2012, 115, 485–503. [Google Scholar] [CrossRef]
- Ankley, G.T.; Di Toro, D.M.; Hansen, D.J.; Berry, W.J. Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxicol. Chem. Int. J. 1996, 15, 2056–2066. [Google Scholar] [CrossRef]
- Hirner, A.V. Speciation of alkylated metals and metalloids in the environment. Anal. Bioanal. Chem. 2006, 385, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Pardue, J.H.; Patrick, W.H. Changes in Metal Speciation Following Alteration of Sediment Redox Status. In Metal Contaminated Aquatic Sediments Edition, 1st ed.; Allen, H.E., Ed.; Taylor & Francis: Boca Raton, FL, USA, 1995; pp. 169–185. ISBN 9780203747643. [Google Scholar]
- Lacerda, L.D.; Dias, F.J.; Marins, R.V.; Soares, T.M.; Godoy, J.M.O.; Godoy, M.L.D. Pluriannual watershed discharges of Hg into a tropical semi-arid estuary of the Jaguaribe River, NE Brazil. J. Braz. Chem. Soc. 2013, 24, 1719–1731. [Google Scholar] [CrossRef]
- Schartup, A.T.; Ndu, U.; Balcom, P.H.; Mason, R.P.; Sunderland, E.M. Contrasting effects of marine and terrestrially derived dissolved organic matter on mercury speciation and bioavailability in seawater. Environ. Sci. Technol. 2015, 49, 5965–5972. [Google Scholar] [CrossRef]
- Lacerda, L.D.D.; Marins, R.V.; Dias, F.J.D.S. An arctic paradox: Response of fluvial Hg inputs and bioavailability to global climate change in an extreme coastal environment. Front. Earth Sci. 2020, 8, 93. [Google Scholar] [CrossRef]
- Cotovicz, L.C., Jr.; Marins, R.V.; da Silva, A.R.F. Eutrophication amplifies the diel variability of carbonate chemistry in an equatorial, semi-arid, and negative estuary. Front. Mar. Sci. 2022, 9, 76632. [Google Scholar] [CrossRef]
- Stockdale, A.; Tipping, E.; Lofts, S.; Mortimer, R.J. Effect of ocean acidification on organic and inorganic speciation of trace metals. Environ. Sci. Technol. 2016, 50, 1906–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.X.; Fisher, N.S. Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis. Environ. Toxicol. Chem. Int. J. 1999, 18, 2034–2045. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Harley, C.D.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Ruckelshaus, M.; Duffy, J.E.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Cabral, H.; Fonseca, V.; Sousa, T.; Costa Leal, M. Synergistic effects of climate change and marine pollution: An overlooked interaction in coastal and estuarine areas. Int. J. Environ. Res. Public Health 2019, 16, 2737. [Google Scholar] [CrossRef] [Green Version]
- Fernandino, G.; Elliff, C.I.; Silva, I.R. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities. J. Environ. Manag. 2018, 215, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non- essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Lavoie, M.; Le Faucheur, S.; Boullemant, A.; Fortin, C.; Campbell, P.G. The Influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes 1. J. Phycol. 2012, 48, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Rainbow, P.S. Trace metal concentrations in aquatic invertebrates: Why and so what? Environ. Pollut. 2002, 120, 497–507. [Google Scholar] [CrossRef]
- Wallace, W.G.; Lee, B.G.; Luoma, S.N. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar. Ecol. Prog. Ser. 2003, 249, 183–197. [Google Scholar] [CrossRef]
- Wang, W.X.; Rainbow, P.S. Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ. Chem. 2006, 3, 395–399. [Google Scholar] [CrossRef]
- Wallace, W.G.; Luoma, S.N. Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM). Mar. Ecol. Prog. Ser. 2003, 257, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Pouil, S.; Oberhänsli, F.; Bustamante, P.; Metian, M. Investigations of temperature and pH variations on metal trophic transfer in turbot (Scophthalmus maximus). Environ. Sci. Pollut. Res. 2018, 25, 11219–11225. [Google Scholar] [CrossRef] [PubMed]
- Sezer, N.; Kılıç, Ö.; Metian, M.; Belivermiş, M. Effects of ocean acidification on 109Cd, 57Co, and 134Cs bioconcentration by the european oyster (Ostrea edulis): Biokinetics and tissue-to-subcellular partitioning. J. Environ. Radioact. 2018, 192, 376–384. [Google Scholar] [CrossRef]
- Cheung, M.; Wang, W.X. Influence of subcellular metal compartmentalization in different prey on the transfer of metals to a predatory gastropod. Mar. Ecol. Prog. Ser. 2005, 286, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean. Mar. Ecol. Prog. Ser. 2006, 308, 91–100. [Google Scholar] [CrossRef]
- Geffard, A.; Jeantet, A.Y.; Amiard, J.C.; Le Pennec, M.; Ballan-Dufrançais, C.; Amiard-Triquet, C. Comparative study of metal handling strategies in bivalves Mytilus edulis and Crassostrea gigas: A multidisciplinary approach. J. Mar. Biol. Assoc. United Kingd. 2004, 84, 641–650. [Google Scholar] [CrossRef]
- Redeker, E.S.; Van Campenhout, K.; Bervoets, L.; Reijnders, H.; Blust, R. Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity. Environ. Pollut. 2007, 148, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Wikelski, M.; Cooke, S.J. Conservation physiology. Trends Ecol. Evol. 2006, 21, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.J.; Sack, L.; Franklin, C.E.; Farrell, A.P.; Beardall, J.; Wikelski, M.; Chown, S.L. What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv. Physiol. 2013, 1, cot001. [Google Scholar] [CrossRef]
- Stevenson, R.D.; Tuberty, S.R.; Defur, P.L.; Wingfield, J.C. Ecophysiology and conservation: The contribution of endocrinology and immunology–introduction to the symposium. Integr. Comp. Biol. 2005, 45, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, I.M.; Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Clim. Res. 2008, 37, 181–201. [Google Scholar] [CrossRef] [Green Version]
- Gordon, C.J. Temperature and Toxicology: An Integrative, Comparative and Environmental Approach, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2005; 338p. [Google Scholar]
- Cooke, S.J.; Bergman, J.N.; Madliger, C.L.; Cramp, R.L.; Beardall, J.; Burness, G.; Clark, T.D.; Dantzer, B.; de la Barrera, E.; Fangue, F.A.; et al. One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice. Conserv. Physiol. 2021, 9, coab009. [Google Scholar] [CrossRef]
- IUCN Red List Categories and Criteria, Version 3.1, 2nd ed.; IUCN: Gland, Switzerland, 2012; 32p.
- UNESCO. The United Nations Decade of Ocean Science for Sustainable Development, 2021–2030. 2018. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000261962 (accessed on 27 June 2022).
- Ryabinin, V.; Barbière, J.; Haugan, P.; Kullenberg, G.; Smith, N.; McLean, C.; Troisi, A.; Fischer, A.; Aricò, S.; Aarup, T.; et al. The UN decade of ocean science for sustainable development. Front. Mar. Sci. 2019, 6, 470. [Google Scholar] [CrossRef] [Green Version]
- Virto, L.R. A preliminary assessment of the indicators for Sustainable Development Goal (SDG) 14 “Conserve and sustainably use the oceans, seas and marine resources for sustainable development”. Mar. Policy 2018, 98, 47–57. [Google Scholar] [CrossRef]
- Moura, J.F.D.; Cardozo, M.; Belo, M.S.D.S.P.; Hacon, S.; Siciliano, S. A interface da saúde pública com a saúde dos oceanos: Produção de doenças, impactos socioeconômicos e relações benéficas. Cienc. Saúde Coletiva 2011, 16, 3469–3480. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; Raskin, R.G.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Munns, W.R., Jr.; Helm, R.C.; Adams, W.J.; Clements, W.H.; Cramer, M.A.; Curry, M.; DiPinto, L.M.; Johns, D.M.; Seiler, R.; Williams, L.L. Translating ecological risk to ecosystem service loss. Integr. Environ. Assess. Manag. Int. J. 2009, 5, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Cowx, I.G.; Portocarrero Aya, M. Paradigm shifts in fish conservation: Moving to the ecosystem services concept. J. Fish Biol. 2011, 79, 1663–1680. [Google Scholar] [CrossRef] [PubMed]
Type of Water Body | Expected Climate Change Effects |
---|---|
Freshwater systems | Groundwater variations, directly affecting groundwater contamination; |
High groundwater levels, resulting in topsoil contaminant removal; | |
More frequent river discharges, resulting in differential freshwater metal and metalloid inputs. | |
Estuaries and mangroves | Increased erosion processes due to sea level rises, resulting in the dissociation of deposited sulfides; |
Saline mangrove intrusion oxidizing deeper sediment layers, releasing metals and metalloids and increasing their bioavailability to local biota; | |
Altered annual rainfall rates altering material flows. | |
Marine environment | Altered ocean currents leading to changes in metal transport; |
Changes in the sediment–water interface due to alterations in metal speciation, solubility, and concentration gradients, as well as oxidation–reduction interface potentials; | |
Increased rainfall periods resulting in pulses of high trace metal fluxes to the ocean; | |
Ocean acidification resulting in increasing metal and metalloid bioavailability. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauser-Davis, R.A.; Wosnick, N. Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences. Water 2022, 14, 2415. https://doi.org/10.3390/w14152415
Hauser-Davis RA, Wosnick N. Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences. Water. 2022; 14(15):2415. https://doi.org/10.3390/w14152415
Chicago/Turabian StyleHauser-Davis, Rachel Ann, and Natascha Wosnick. 2022. "Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences" Water 14, no. 15: 2415. https://doi.org/10.3390/w14152415
APA StyleHauser-Davis, R. A., & Wosnick, N. (2022). Climate Change Implications for Metal and Metalloid Dynamics in Aquatic Ecosystems and its Context within the Decade of Ocean Sciences. Water, 14(15), 2415. https://doi.org/10.3390/w14152415